
Eiron
High-level Design, Roadmap, and Status

Oskar Lappi

November, 2023



What is Eiron?

Very simple 2D Monte Carlo neutral particle transport solver

Goal design and benchmark parallel architectures using Eiron, apply
lessons learned to EIRENE



Presentation outline

• Eiron design
• Model overview: simulation, estimation
• System components
• Parallel designs: pros and cons

• Domain-decomposition challenges and solutions
• Charon: library for asynchronous domain-decomposed

communication patterns
• Eiron roadmap and status



Model overview



Model overview

Simulate particle sample
• IN: particle sources,

background fields (2D grids)
• OUT: particle trajectories

(point paths)

Estimate fields (”tally”)
• IN: particle trajectories,

background fields (2D grids)
• OUT: estimate fields

(2D grids)



Simulation: algorithm

Input a particle position, velocity, and species
1. Generate a random variable longevity ∼ Exp(1)

• The longevity is the length of the step if the MFP = 1
2. Select the collision context by the particles species

• Collision context = grid of collision rates for a particle species
3. Follow the particle’s heading

Integrate over collision rates until the integral = longevity
Where the integral ends is the end-point of the step

4. Sample collision event from collision rates in end-point cell
5. Update particle position, velocity and species from event
6. If the collision event keeps the particle alive, repeat



Simulation: core ideas

Deterministic multi-threaded Monte Carlo:
Regardless of number of threads, for a given seed, each particle is
simulated using the same sequence of random numbers

Goal Simulation should be completely deterministic
Crucial for comparing different parallel designs

Physics parameters in config including chemical species
no hardcoded hydrogen/photon cases in source

Goal Separate software and domain science concerns



Simulation: limitations

• Grid repr: 2D rectangular grid of square cells, no other kind
• Wall geometry: = the grid’s boundaries, no polygons
• Collision rate: not dependent on any test particle property



Estimation

Estimation is currently done using track-length in cell

Estimation: limitations
• Variances not calculated yet, will be tackled once domain

decomposition is implemented



System components



System components: Simulator



System components: Estimator



System components: Simulator and estimator pipeline



System components: Simulator-estimator



Parallel designs



Parallel designs: OMP shared grid

Equivalent to current design of EIRENE+OMP

+ Grid’s memory footprint is constant
- Shared mutable state → RW sync severely limits scalability
- Can only use as many workers as there are on one node
- Whole grid must fit on one node

STATUS: DONE



Parallel designs: OMP private grid

Equivalent to current design of EIRENE+MPI

+ No shared mutable state → no synchronization until reduction
- Memory footprint scales linearly with number of processes
- Whole grid (×n_threads) must fit on one node

STATUS: DONE



Parallel designs: MPI pipeline

+ Shared mem simulation → constant memory footprint
+ Domain decomp estimation → private grids, but

memory-efficient
- Whole grid must fit on one node

STATUS: DONE, BUT REIMPLEMENTING WITH Charon
(more on Charon later)



Parallel designs: Domain-decomposed simulation grid



Parallel designs: Domain-decomposed simulation grid

+ Domain decomp → memory use scales
+ Scale no longer limited to sim grid fitting on one node, can go

multinode
+ Spatial load balancing now possible
- Load balancing is complicated

STATUS: DESIGN STAGE
DESIGN MOSTLY DONE



Domain-decomposed particle
tracing



Domain-decomposed simulation: closer look



Domain-decomposed simulation: load balancing idea



Domain-decomposed simulation: load balancing idea

Idea for load estimates
Run a low-resolution simulation (e.g. one cell = one subdomain),
use produced density estimate as load estimate.

Bonus: because serial simulation is fully deterministic, we could
run this in each process without communication.



Domain-decomposed simulation: sticky particles

Because variance has to be counted per particle history,
the particles are sticky in each subdomain
— the same worker must process them each time.

Let’s do a thought experiment to see what constraints follow.



Domain-decomposed simulation: example



Domain-decomposed simulation: example



Domain-decomposed simulation: example



Domain-decomposed simulation: example



Domain-decomposed simulation: example



Domain-decomposed simulation: example



Domain-decomposed simulation: example



Domain-decomposed simulation: example



Domain-decomposed simulation: example



Domain-decomposed simulation: sticky particles

In this case, the worker could have just sent the particle stream
back from whence it came.

Let’s see where this is not the case.



Domain-decomposed simulation: example 2



Domain-decomposed simulation: example 2



Domain-decomposed simulation: example 2



Domain-decomposed simulation: example 2



Domain-decomposed simulation: sticky particles

Naive solutions
Store list of assigned workers in each visited subdomain

- not scalable (1000-10000 subdomains = kBs of overhead)
Index possible combinations of workers

- not scalable, worst case n_workers/2 bits per message

Minimal overhead solution
Define a function that determines the worker from the particle id,
and a binary choice. Then the initial choice of worker selects a
worker in each subdomain.



Domain-decomposed simulation: sticky particles



Domain-decomposed simulation: sticky particles



Domain-decomposed simulation: hashing

Choose some hash function h

h : (particle_id , choice) → Z

worker index = h(particle_id , choice)%workers in subdomain

The additional parameter choice can be a single bit.
1-bit of overhead! We can encode that in an MPI tag.

An illustrated example follows.



Domain-decomposed simulation: hashing



Domain-decomposed simulation: hashing



Domain-decomposed simulation: hash function

Extensive literature on hash functions, many options to choose
from:

• Linear congruential generators (LCGs)
• MurmurHash
• Xorshift
• PCG
• etc.

Easy to make the choice of hash function a configurable
parameter. Can make the decision later after benchmarking,
instead of agonizing over the mathematical properties of each.



”When in doubt, use brute force.”
- Ken Thompson



Domain-decomposed simulation: power of two choices

The choice bit enables a dynamic load-balancing policy known as
randomized load balancing with power of two choices.

Idea: randomly sample two servers to send a request to, select the
one that has a lower estimated load

In our case, the sample is determined by the two hashes, and this
is one design consideration for the hash functions, how well they
distribute to two sufficiently uncorrelated sets.



Domain-decomposed simulation: dynamic load balancing



Domain-decomposed simulation: dynamic load estimate

The only thing that remains is to choose this load estimate, and
define how to distribute them back to the workers that generate
particles, where the load balancing decisions are made.

Two simple solutions, both dependent on receiving particle
termination messages immediately.

1. Use average time to process particle as load estimate
2. Use number of active particle streams as load estimate



Domain-decomposed simulation: trajectory termination



Domain-decomposed simulation: trajectory termination

Termination possible with one message iff we know which workers
to send to in each subdomain. But we may send too many
message with this method, the particle may not have visited each
subdomain.

Alternative methods:
• Flood termination message back through all senders
• Global synchronization after N particles



Domain-decomposed simulation: complexity

There is a lot of complexity involved in this solution, and solving it
using raw MPI calls is cumbersome. A lot of the subproblems we
need to solve are also quite generic.

→ I’ve decided to create a separate library to handle the
communication: Charon



Charon concepts mapped to Eiron

Channel
Eiron: All messages related to a subdomain are in one channel

Streams
Eiron: All messages related to a particle trajectory form a stream

Multichannel
Eiron: A multichannel allows a worker to process many subdomains



Charon concepts: definitions

Channel
Producers send messages to consumers through a channel

• Different channels are used for different kinds of data
• Channel consumers can process data specific to the channel

Multichannel
A set of channels through which:

• Producers send messages with channel addressing
• Consumers receive messages from any of these channels

Streams
A sequence of messages forming a meaningful whole.

• In each channel, between one producer and one consumer



Charon: Roadmap

X Futures: Asynchronous MPI handles, wraps buffer+request
X Future pools: concurrent communication requests
X Variable sized messages
X Streams
X Distributed channel creation, producer-consumer assignment
X Multichannel base implementation
	 Replayable message traces for testing, debugging, profiling,

and benchmarking
- Multichannel: cross-channel stream lifecycle management
- Multichannel: sticky streams



Eiron: Roadmap
Current project
	 Get tracing and multichannels in Charon
- Replace Eiron’s bespoke MPI communication API with Charon
- Reimplement MPI pipelines
- Implement domain-decomposed grids
- Benchmark approaches and analyze results
- Publish initial results

Backlog
- KDMC prototype
- Verification against EIRENE
- REQUIREMENTS FOR collision rate model
- REQUIREMENTS FOR geometry
- REQUIREMENTS FOR grid
- Trajectory representation comparison (depends on grid)



Thank you

Eiron
https://version.helsinki.fi/lapposka/eiron

Charon
MPI channel library
https://version.helsinki.fi/lapposka/charon

FFS
Portable CMake builds with on-demand dependency downloading
Used to build both Charon and Eiron
https://version.helsinki.fi/lapposka/ffs

docker-devenv
Portable dev environments, spin up in any directory
Contains development dependencies for Charon and Eiron
https://version.helsinki.fi/tools/docker-devenv

https://version.helsinki.fi/lapposka/eiron
https://version.helsinki.fi/lapposka/charon
https://version.helsinki.fi/lapposka/ffs
https://version.helsinki.fi/tools/docker-devenv


Appendix: Charon futures
A future is a handle to a value which will become available at some
point. MPI has requests, which allow us to do what futures do,
but with vanilla MPI we have to keep track of the memory buffer
that the request is tied to, and the API is a little heavy. So Charon
implements futures.

charon::mpi_future<int> fut;
fut.irecv(...);

if (fut.test()){
auto status = fut.status(); //Wraps MPI_Status
int message = fut.buffer;
fut.reset();
//Process message and status
...

} else {
//do something else
...

}



Appendix, Charon future pools

MPI will have to wait until we create an asynchronous request to
copy data to the futures buffer. Future pools help. A future pool is
a list of pre-allocated futures that we can assign to requests and
complete one at a time.

charon::mpi_future_pool<int> futures;
auto *fut = futures.try_get();
if (fut != nullptr){

fut.irecv(...);
}
...
fut = futures.test_any();
if(fut != nullptr){

//process future
}



Appendix, Charon channels
Channels have internal future pools for received messages, but they
take a future as an input parameter for sent messages, so that the
sender can check the status of the message request without asking
the channel object.
+

//Producer view
charon::async_channel chan(...);
auto *fut = futures.try_get();
create_message(fut.buffer);
chan.send(fut, stream_tag);
...
//Consumer view
charon::async_channel chan(...);
auto *fut = chan.recv();
//OR
auto *fut = chan.try_recv();


