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Importance	of	gyrokinetic	simulations	of	
fishbone	modes	for	EP	transport

➢ Zonal	flows	(ZFs)	can	impact	significantly	thermal	and	EP	transport	by	mitigating	
microturbulence	[1]	and	AEs	[2]	saturation	amplitudes	

➢ Drift-waves	modes	and	EP-driven	AEs	can	trigger	ZFs	respectively	through	
modulational	instability	[3]	and	EPs-induced	polarisation	[4]			

➢ Fishbones	known	to	trigger	ITBs	in	ASDEX	[5],	MAST	[6],	HL-2A	[7],	EAST	[8]	
plasmas,	and	were	observed	to	destabilise	strong	zonal	sheared	flows	in	kinetic-
MHD	simulations	[9,10]	

➢ A	gyrokinetic	formalism	for	self-consistent	ZFs	evolution	is	crucial	to	capture	their	
collisionless	damping	[11],	requiring	kinetic	treatment	of	thermal	ions	

➢ GTC	is	applied	to	study	self-consistently	fishbone-induced	EP	transport		in	DIII-D	
and	ITER,	as	a	stepping	stone	towards	upcoming	cross-scale	gyrokinetic	simulations	

[1]	Z.	Lin	et	al.	1998,	Science																									
[2]	Y.	Todo	et	al.	2012,	Nucl.	Fusion	
[3]	L.	Chen	et	al.	2000,	Phys.	Plasmas

[4]	Z.	Qiu	et	al.	2016,	Phys.	Plasmas																									
[5]	S.	Günter	et	al.	2001,	Nucl.	Fusion	
[6]	A.R.	Field	et	al.	2011,	Nucl.	Fusion

TEM 
location 

qmin

[7]	W.	Chen	et	al.	2016,	Nucl.	Fusion	
[8]	X.	Gao	et	al.	2018,	Phys.	Lett.	A	
[9]	G.	Brochard	et	al.	2020b,	Nucl.	Fusion

[10]	G.	Wanling	et	al.	2023,	Nucl.	Fusion	
[11]	M.N.	Rosenbluth	et	al.	1998,	PRL



➢ GTC	has	been	verified	and	linearly	validated	for	internal	kink	instability	in	DIII-D	plasmas	

➢ Successful	benchmark	for	kink	growth	rate	in	ideal	MHD	limit	between	GTC	and	kinetic-MHD	codes	

➢ Linear	validation	obtained	between	ECE	and	 	profiles	in	GTC	and	XTOR-K	simulations		𝜹𝑻𝒆

GTC	capable	of	simulating	macroscopic	modes	[1]

2/30[1]	G.	Brochard	et	al.	2022,	Nucl.	Fusion



ITER	baseline	pre-fusion	#101006

[1]	A.	R.	Polevoi	et	al.	2020	Nucl.	Fusion	60	096024

➢Analysing	ITER	scenarios	as	part	of	
ITPA-EP	15	joint	activity	and	ISEP	US	
DOE	theory	milestones	2022	

➢15	codes	from	Europe,	US	and	Asia	
used	to	study	EP	transport	for	all	scales	

➢A	baseline	pre-fusion	plasma	is	chosen	
by	IO[1]	for	macroscopic	simulations	

➢Scenario	found	ideal	MHD	stable	[1],	
but	kinetic	effects	need	to	be	included	

➢NBI	modelized	in	GTC	with	a	co-
passing	anisotropic	slowing-down	pdf	
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DIII-D	discharge	#178631	as	ITER	matching	shot

➢A	DIII-D	discharge	chosen	for	
experimental	validation	with	ITER	
prefusion	baseline	scenario	(similar	
q,	profile	shapes	and	 )	

➢N=1	fishbone	modes	experimentally	
observed,	with	frequencies	of	order	
20kHz	

𝜷𝑵

➢NBI	also	modelized	with	a	anisotropic	
slowing-down	pdf	

Partial	pressures Safety	factors
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Fishbone	unstable	for	DIII-D	discharge
➢Low	n	modes	stable	with	

maxwellian	EP	distributions	

➢Using	realistic	beam,	a	n=1	
fishbone	mode	destabilised	past	a	
EP	beta,	close	to	marginal	stability	

➢m=2	side-band	is	significant	and	
extends		mode	structure	close	to	
plasma	edge	

𝛟

➢Both	trapped	and	passing	
particles	contribute	to	resonant	
interaction	

➢Resonant	contribution	from	
passing	particles	is	dominant	

Growth	rates	/	frequencies
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Zonal	flows	lower	fishbone	saturation	amplitude

[1]	Z.	Qiu	et	al.	2016,	Phys.	Plasmas
6/30

➢ Nonlinear	GTC	simulations	performed	keeping	only	n=1	mode,		with	and	without	zonal	flows	

➢ ZFs	inclusion	significantly	lowers	saturation	amplitude,	from	| 	| 	to	2 	at	 ,	
highlighting	that	wave-particle	trapping	is	not	always	the	main	saturation	mechanism	for	fishbones		

➢ ZFs	have	a	growth	rate	twice	of	n=1	mode,	typical	of	force-driven	ZFs	generation	[1]	

𝜹𝑩/𝑩𝟎 ~𝟖 × 𝟏𝟎−𝟑 × 𝟏𝟎−𝟑 𝒒𝒎𝒊𝒏



➢Zonal	flows	inclusion	allow	GTC	and	M3D-C1	to	obtain	saturation	amplitudes	comparable	with	ECE	[1]	

➢The	significant	m=2	side-band	allows	GTC	to	obtain	a	quantitative	agreement	with	the	ECE		

➢Validation	to	be	completed	with	cross-scales	GTC	simulation	for	more	realistic	zonal	flows	levels

Nonlinear	validation	against	ECE	measurements

7/30[1]	G.	Brochard	et	al.	2022,	to	be	submitted	to	Phys.	Rev.	Lett.



➢Zonal	flows	also	lowers	the	simulated	neutron	
drop,	providing	a	quantitative	agreement	with	
the	experimental	one,	further	validating	GTC	for	
fishbone	simulations	

➢The	EP	density	profile	is	flattened	due	to	
resonant	transport	( 	 	inside	

	without	zonal	flows)		

➢Zonal	flows	inclusion	lead	to	weaker	EP	
transport	( 	 	inside	 )

|𝜹𝒏𝑬𝑷 /𝒏𝑬𝑷 | ~ 𝟏𝟓%
𝒒𝒎𝒊𝒏

|𝜹𝒏𝑬𝑷 /𝒏𝑬𝑷 | ~ 𝟑% 𝒒𝒎𝒊𝒏

Outward	EP	transport	and	neutron	drop
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Zonal	flows	generate	additional	drift	for	EPs

9/30

➢Hole	and	clump	structures	appear	around	both	trapped	and	passing	resonances	

➢Fishbone	frequencies	chirp	down	at	saturation	with	and	without	ZFs	

➢ZFs	provide	an	additional	drift	frequency	 ,	locking	linearly	resonant	EPs𝜹𝝎𝑬,𝟎𝟎 = − 𝝏𝝍𝝓𝟎𝟎
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Zonal	flows	prevent	more	EPs	to	become	resonant

➢Precessional	hole	and	clump	stays	indeed	static	with	zonal	flows,	reducing	

➢Resonant	passing	EPs	are	detuned	by	ZFs,	potentially	due	to	ZFs	effects	on	transit	frequency		

➢ZFs	prevent	phase	space	structures	from	affecting	new	EPs,	explaining	fishbone	mitigation	by	ZFs
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Fishbone-induced	ZFs	can	lead	to	ion-ITB

➢GTC	electrostatic	simulations	find	an	unstable	TEM	mode	at	 	with	 	

➢ Fishbone-induced	 	much	larger	at	saturation	than	 ,	which	can	lead	to	turbulence	suppression

𝜌 = 0.41 𝛾𝑇𝐸𝑀 = 1.38 × 105𝑠−1

𝝎𝑬×𝑩 𝜸𝑻𝑬𝑴

➢ Ion-ITB	observed	in	DIII-D	after	fishbone	bursts	occuring	at	 	ms,	as	in	ASDEX	[1],	MAST	
[2],	HL-2A	[3],	EAST	[4]

t ∈ [1580,1620]

➢ Cross-scales	GTC	simulations	with	 	required	to	confirm	fishbone-induced	ITB	n ∈ [0,50]
[1]	S.	Günter	et	al.	Nucl.	Fusion,	2001	
[2]	A.	R.	Field	et	al.,	Nucl.	Fusion	2011

[3]	W.	Chen	et	al.	Nucl.	Fusion,	2016	
[4]	X.	Gao	et	al.	Physics	Letters	A	2018
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Fishbone	unstable	with	realistic	beam	in	ITER

➢Low	n	modes	also	stable	with	
maxwellian	fast	ion	kinetic	effects	

➢With	anisotropic	slowing-down	
pdf	for	fast	ions,	a	dominant	
n=m=1	fishbone	mode	is	
destabilized	

➢Similarly	to	the	DIII-D	discharge,	
the	mode	has	a	significant	m=2	
side-band

[1]	R.	Betti	et	al.	PRL	1993

➢Fishbone	mode	driven	by	passing	
particles	through	two	drift-transit	
resonances	[1]	

Growth	rates	/	frequencies 𝛟
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Zonal	flows	also	impact	the	ITER	scenario

➢ Nonlinear	GTC	simulations	performed	again	keeping	only	n=1	mode,		with	and	without	zonal	flows	

➢ ZFs	inclusion	again	lowers	saturation	amplitude,	from	| 	| 	to	1 	at	 	𝜹𝑩/𝑩𝟎 ~𝟒 × 𝟏𝟎−𝟒 × 𝟏𝟎−𝟒 𝒒𝒎𝒊𝒏

13/30

➢ Fishbone-induced	 	at	saturation,	could	lead	to	ITB	formation	in	this	ITER	scenario		

➢ Long	time	simulation	with	zonal	flows	and	fishbone	to	be	performed	with	GTC	

𝝎𝑬×𝑩/𝜸𝑻𝑬𝑴  ∼ 𝟑

n 	TEM∈ [𝟏𝟓𝟎, 𝟐𝟓𝟎]



Marginal	EP	transport	in	ITER	scenario
➢ Inward	and	outward	EP	fluxes	exist	due	to	

positive	and	negative	pressure	gradients	

➢EP	redistribution	is	marginal,	up	to	2%	of	
initial	density	profile	[1]	without	zonal	flows.	
Similar	levels	were	found	for	the	alpha-
fishbone	in	ITER	15	MA	DT	scenarios	[2]	

➢NBI	pressure	drive	too	low	to	cause	large	
redistribution		

➢Hole	and	clump	structures	form	in	phase	
space,	but	saturate	at	low	amplitude	

[1]	G.	Brochard	et	al.	2022,	to	be	submitted	to	Phys.	Rev.	Lett.	
[2]	G.	Brochard	et	al.	2020b,	Nucl.	Fusion 14/30



Conclusions	and	perspectives

➢ Zonal	flows	can	be	force-driven	by	fishbone	modes	and	dominate	their	saturation		

➢ Simulated	fishbone	saturation	levels	in	quantitative	agreement	with	ECE	and	neutron	drop	
measurements	on	DIII-D	with	zonal	flows	

➢ Zonal	flows	reduce	available	resonant	EPs,	providing	the	mechanism	for	fishbone	saturation	

➢ Fishbone-induced	zonal	flows	may	lead	to	microturbulence	suppression,	supported	by	ion-
ITB	formation	after	fishbone	bursts	in	DIII-D	

➢ Cross-scales	simulations	on	DIII-D	and	ITER	required	to	confirm	fishbone-induced	ITBs	
causality	

➢ High	performance	scenarios	could	be	developed	in	ITER	by	triggering	benign	fishbones	
15/30
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Versatile	method	for	CoM	distribution	construction
➢ A	cartesian	CoM	grid	is	first	built	to	

determine	orbits’	nature	and	 	𝑱𝑪𝒐𝑴

I)	Construction	of	CoM	
Jacobian	on	a	cartesian	

)	grid(𝑬, 𝝀 = 𝝁𝑩𝟎/𝑬, 𝑷𝝋

II)	Inputs	from	Fokker-Planck	
codes	or	experimental	

measurements

III)	3D	 	spline	function	of	
the	CoM	distribution	
F( =-1,1)

𝑪𝟐

(𝐸, 𝜆, 𝑃𝜑, 𝜎

3D	Monte-Carlo	sampling	
based	on	spline	CoM	

distribution

Full-F	codes

Backward	transformation	in	
5D/6D	cartesian/Boozer	

coordinates

IV)	 	first	order	
derivatives	along	CoM	

F( )	

𝐶1

𝜕𝑖
(𝐸, 𝜆, 𝑃𝜑, 𝜎

codes𝜹𝑭 

IV)	Chain	rule	operations	to	
obtain	 	 	and	𝐶1 𝛁𝑭 𝝁,𝒗||

𝝏𝒗||
𝑭 𝝁,𝑿

➢ Distributions/markers	in	«	regular	»	
(E,p,R,Z)	coordinates	are	loaded	from	FK	
codes	or	experimental	measurements

➢ A	 	spline	of	the	3D	CoM	distribution	is	
defined	to	ensure	good	numerical	
properties	for	both	full-F	and	 	codes

𝑪𝟐

𝜹𝒇

➢ A	backward	 	->	 	
transformation	is	used	to	load	markers	
uniformly	along	orbits	for	full-F	codes

(𝑬, 𝝀, 𝑷𝝋, 𝝈) (𝑬, 𝒑, 𝑹, 𝒁)

➢ For	 	codes,	the	weigh	equation	can	be		
fully	defined	by	using		 	first-order	CoM	
derivatives	(using	a	chain	rule)	

𝜹𝒇
𝐶1

16/30



➢A	method	based	on	a	cartesian	CoM	grid	 	avoid	
some	singularities	on	 	and	 	observed	in	[1]			

➢
,	orbit	tracing	necessary	to	obtain	 	

in	3D,	requiring	a	backward	transformation	to	initialise	
markers	in	5D/6D	space	on	each	 	vertice	

(E, λ, Pφ)
𝑱𝑪𝒐𝑴 𝚫𝐕𝑪𝒐𝑴

JCoM ∝ ∑
σ

τb(E, λ, Pφ) τb

(E, λ, Pφ)

Construction	of	a	smooth	CoM	jacobian

exactly	correct	in	6D	for	the	gyroangle	such	as	𝑣𝜃 = 0

Generalised	midplane

)	->	(E, , )	transformation(𝑬, 𝝀, 𝑷𝝋
𝒗∥

𝒗
𝑹𝒎𝒊𝒅

17/30[1]	A.	Bierwage	et	al.	2022,	Comput.	Phys.	Commun.

➢ For	a	given	vertice	on	cartesian	CoM	grid	 ,	the	
coupled	set	of	equations	on	 	implicit	in	 	is	solved	

to	obtain	( , )		

➢ This	backward	transformation	on	the	generalized	midplane		
does	not	require	orbit	tracing	

(𝑬𝒊, 𝝀𝒋, 𝑷𝝋,𝒌)
(𝒗∥, 𝝀) 𝑅𝑚𝑖𝑑𝒗∥

𝒗
𝑹𝒎𝒊𝒅

➢Transformation	is	performed	on	midplane	
,	intersected	by	all	EPs	orbits	[1]	𝑹𝒎𝒊𝒅 ≡ 𝑩 ⋅ 𝛁𝐁 = 𝟎



Co-passing	and	
counter-passing

Co-passing

Lost

Counter-
passing

Potato Stagnation

Trapped	
(banana)

Backward	transformation	and	orbit	classification
➢The	solutions	of	

	are	

obtained	numerically	by	scanning	
	,	for	 	

➢For	each	orbit,	the	algorithm	finds	
two	solutions,	on	the	LFS	and	HFS	
of	the	 	midplane	

𝜆[𝑅𝑚𝑖𝑑, 𝑣∥(𝑅𝑚𝑖𝑑, 𝑃𝜑,𝑘)] = 𝜆𝑗

𝑹𝒎𝒊𝒅 v∥ ∈ [−vi, vi]

𝐵 ⋅ ∇𝐵 = 0

18/30

➢8	types	of	orbits	are	identified	
based	on	the	values	for	 )	on	
the	OLFS	and	OHFS	

➢ In	the	 	phase	space	at	

fixed	energy,	the	topology	is	
identical	to	White’s	.	A	2000x2000	
grid	was	used	

(𝑹𝒎𝒊𝒅, 𝒗∥

(𝑷𝝋, 𝝀)



Accuracy	of	the	backward	transformation
➢ The	backward	transformation	is	

tested	with	the	XTOR-K	6D	
pusher	on	a	200x200	( )	grid	
at	fixed	energy	

➢ For	each	target	( ),	the	
corresponding	( )	are	
identified	on	the	OHFS	

➢ 	is	re-computed	from	the	
markers	6D	position	

𝑷𝝋, 𝝀

𝑷𝝋,𝒊, 𝝀𝒋
𝑹𝒎𝒊𝒅, 𝒗∥

𝑷𝝋

19/30

➢ The	error	on	 is	under	1%,	
showing	good	numerical	accuracy	
of	the	backward	transformation	

➢ Similar	results	are	obtained	for	

𝑃𝜑 

𝜆



«	Analytic	»	construction	of	CoM	jacobian

20/30

➢ 	is	theorically	defined	as	𝐽𝐶𝑜𝑀

➢ 	can	be	obtained	on	the	 	
grid	from	the	bounce	time	for	each	
orbit

𝑱𝑪𝒐𝑴 (𝑬, 𝝀, 𝑷𝝋)

➢ 	is	succesfully	compared	with	the	
histogram	of	a	flat,	isotropic	and	
monoenergetic	distribution	as	

		

➢ Small	inaccuracies	remain	near	the	
trapped-passing	boundary	

𝐽𝐶𝑜𝑀

𝑯𝑪𝒐𝑴 = 𝑭𝑪𝒐𝑴 × 𝑱𝑪𝒐𝑴

➢With	a	realistic	density	profile,	most	
particles	are	located	near	
topological	boundaries	of	the	 	
grid	

(𝑃𝜑, 𝜆)
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Fishbone-induced	ion	ITBs	in	JET-DT	
#99948	? ➢ JET	DT	pulse	#99948	

experienced	a	2x	increased	
fusion	gain	with	Q=0.32	after	
onset	of	fishbone	bursts

Ion-ITB

Ion-ITB

Ion-ITB

21/30[1]	G.	Brochard	et	al.	2023,	submitted	to	Phys.	Rev.	Lett.	

➢ Ion-ITB	formation	is	visible	
after	t=9s	at	q=2,	no	electron	
ITB	identified	

➢ There	is	a	possible	causality	
between	fishbone	starting	at	
t=9s	and	the	ion-ITB,	similar	
to	[1]	on	DIII-D	

➢ Nonlinear	gyrokinetic	and	
kinetic-MHD	need	to	be	
performed		with	realistic	CoM	
pds	to	verify	this	causality



JET-DT	#99948	:	Fast-ion	distributions
➢ Distributions	in	the	(E,	 ,R,Z)	phase	space	

are	provided	from	TRANSP-NUBEAM	for	
alphas	and	NBI	

➢ 256k	markers	are	used	for	both	alphas	and	
NBI	to	reproduced	distributions	

➢ Resolution	in	the	 	space	is	relatively	

ok	:	  =	70	(NBI)	–	340( ,	  =	50.		

➢ A	low	spatial	resolution	is	used	:	220	grid	
points	on	 10	flux	surfaces.	It	restricts	
heavily	 	resolution	in	CoM	space.	A	2D	
cartesian	re-mapping	with	a	18x18	grid	is	
performed		

➢ A	H-minority	heated	by	ICRH	is	also	present,	
but	not	modelled	by	NUBEAM	

𝒗∥

𝒗

(𝑬,
𝒗∥

𝒗
)

𝑁𝐸 𝛼) 𝑁𝑣∥

~
𝑷𝝋

22/30



Jacobian	construction	on	CoM	grid

23/30

➢ The	CoM	grid	used	has	the	
resolution	:	( =50,	 =25,	 =20)	

➢ 	is	
rather	smooth	on	the	CoM	grid

𝑵𝑬 𝑵𝝀 𝑵𝑷𝝋

𝚫𝑽𝑪𝒐𝑴 = 𝐉𝑪𝒐𝑴𝚫𝐄𝚫𝝀𝚫𝐏𝝋

➢Co-passing	and	counter-passing	
orbits	treated	separately	when	
they	both	exist	on	CoM	grid	
(degeneracy)	

➢Trapped	orbits	contribution	split	
in	two	to	ensure	 	continuity	
over	trapped-passing	boundary	

JCoM



➢ 	can	also	be	computed	numerically	using	the	(E,p,R,Z)->CoM	coordinate	transform	as	

➢ The	two	methods	compare	well,	except	at	the	domain	edge	due	to	the	3rd	order	interpolation	

➢ Both	Jacobian	methods	can	be	used	to	compute	CoM	distributions

𝚫𝑽𝑪𝒐𝑴

Alternative	Jacobian	construction	

ΔVCoM(E, λ, Pφ, σ) =
NEpRZ

∑
i

δ3(XEpRZ,i − XCoM)ΔEΔλΔPφ
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Interpolation	between	(E,p,R,Z)->	CoM	distribution	
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➢The	CoM	D	beam	distribution	is	computed	as	

➢ 	needs	also	to	be	separated	in	two	between	co-going	and	counter-going	orbits	( )𝐹𝐷,𝐶𝑜𝑀 σ = ± 1

FD(E, λ, Pφ, σ) =
NEpRZ

∑
i

δ3(XEpRZ,i − XCoM)FD(E, p, R, Z)
ΔVEpRZ

ΔVCoM



➢ Distribution	on	CoM	grid	slightly	
adjusted	to	satisfy	 	condition	𝑪𝟐

➢ 	CoM	distribution	defined	with	2nd	
order	3D	B-spline	:	
𝑪𝟐

Spline	construction,	D	beam
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➢ Samples	out	of	topological	
boundaries	removed	via	backward	
CoM	->	(E,p,R,Z)	transformation

➢Markers	in	5D/6D	full-F	codes	
(cylindrical/Boozer	coordinates)	
initialised	via	backward	transformation



1st	order	derivatives	in	CoM	space
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➢First	order	 	derivatives	of	the	CoM	distribution	directly	obtained	from	the	3D	spline	

➢ In	 	codes,	the	derivatives	used	in	the	weight	equation	can	be	computed	through	the	chain	rule	

➢The	forward	transformation	(E,p,R,Z)	->	CoM	can	be	used	for	each	marker	to	determine	which	of	
the	splined	CoM	distributions	to	use	(co-going	or	counter-going)	

𝐶1

𝛿𝐹

∇𝐹 𝜇,𝑣||
= ∇𝐸 𝜇,𝑣||

𝜕𝐹
𝜕𝐸

+ ∇𝜆 𝜇,𝑣||

𝜕𝐹
𝜕𝜆

+ ∇𝑃𝜑 𝜇,𝑣||

𝜕𝐹
𝜕𝑃𝜑

𝜕𝐹
𝜕𝑣||

  𝜇,𝑋 
=

𝜕𝐸
𝜕𝑣||

𝜇,𝑋
𝜕𝐹
𝜕𝐸

+
𝜕𝜆
𝜕𝑣||

𝜇,𝑋
𝜕𝐹
𝜕𝜆

+
𝜕𝑃𝜑

𝜕𝑣||
𝜇,𝑋

𝜕𝐹
𝜕𝑃𝜑



EP	frequencies	in	CoM	space
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➢EP	frequencies	( )	can	be	
obtained	in	the	CoM	spaces	
through	orbit	analysis	( 	
traces)	

➢These	mappings	enable	
identification	of	resonant	plans		
for	a	given	mode	frequency	

➢ IDS	will	be	created	to	store	these	
informations	for	a	given	scenario	

ωb, ωd

θ(t), φ(t)
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Conclusions
➢A	versatile	method	to	initialise	CoM	distributions	in	full-F	and	 	codes	from	experimental	and	

Fokker-Planck	inputs	was	presented	

➢An	analytical	backward	CoM	->	(E,p,R,Z)	transformation	was	successfully	created,	allowing	precise	
orbit	characterisation	in	CoM	space			

➢Using	XTOR-K’s	particle	pusher,	the	CoM	Jacobian	is	accurately	computed	on	a	cartesian	CoM	grid	

➢A	JET-DT	pulse	with	potential	fishbone-induced	microturbulence	stabilisation	is	used	to	test	the	
CoM	distribution	transformation	method	

➢The	NUBEAM	(E,p,R,Z)	distribution	is	transformed	into	a	CoM	distribution,	separating	CoM	space	
between	co-going	and	counter-going	topological	regions	

➢3D	B-spline	are	used	to	define	 	CoM	distributions	and	their	 	first-order	derivatives.	The	
backward	transformation	is	used	to	enforce	the	CoM	space	topological	boundaries	

δF

C2 C1



Perspectives	

➢Re-process	the	D-T	beam	and	alpha	distributions	with	NUBEAM	input	using	finer	resolution	

➢Perform	loop	forward	 	and	backward	 	
transformations	to	quantity	errors	made	during	distribution	conversion	

➢Test	the	CoM	initialisation	in	first	principles	codes	such	as	XTOR-K	(full-F)	and	GTC	( )	

➢ Implement	the	method	in	IMAS	as	to	be	compatible	with	the	EP	stability	workflow	

➢Accommodate	IMAS	outputs	for	all	EP	codes	across	the	EP	community	

➢Perform	nonlinear	kinetic-MHD	and	gyrokinetic	simulations	to	study		fishbone-microturbulence	
interaction	for	the	JET-DT	pulse	#99948	

(E, p, R, Z) → (E, λ, Pφ, σ) (E, λ, Pφ, σ) → (E, p, R, Z)

δF
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Nonlinear	validation	against	ECE	measurements



➢CHEASE	used	to	produced	a	set	of	q	profiles	with	different	 	values	

➢Saturation	amplitudes	sensitive	to	 	values	and	magnetic	shear	

➢Zonal	flows	inclusion	decreases	significantly	saturation	amplitude	for	all	cases

𝒒𝒎𝒊𝒏

𝒒𝒎𝒊𝒏

Sensitivity	of	fishbone	amplitude	on	𝒒𝒎𝒊𝒏



Zonal	flows	prevent	large	EP	radial	excursion

➢Hole	and	clump	structures	appear	around	both	trapped	and	passing	resonances	

➢EP	transport	from	passing	resonance	stops	earlier	with	zonal	flows	

➢Zonal	flows	prevent	hole	and	clump	in	trapped	region	to	move	as	mode	chirps	down

no	ZFs, with	ZFs,





DIII-D



ITER





GTC	gyrokinetic	model

Nonlinear	gyrokinetic	equation Poisson	equation Ampère	equations

Electron	continuity	equation

Adiabatic	perturbed	electron	pressure

[1]	W.Deng	et	al.,	Nucl.	Fusion,	52,	023005	(2012)	
[2]	G.Dong	et	al.,	Phys.	Plasmas,	24,	081205	(2017)	



Reduction	to	linear	ideal	MHD
Poisson	equation Perpendicular	Ampère	law Parallel	Ampère	law

Continuity	equation

➢ This	physical	model	leads	to	the	following	dispersion	relation

[1]	W.Deng	et	al.,	Nucl.	Fusion,	52,	023005	(2012)	
[2]	G.Dong	et	al.,	Phys.	Plasmas,	24,	081205	(2017)	



Identical	mode	structure	for	electrostatic	potential



➢The	EFIT	reconstruction	needs	to	be	adjusted	to	recover	a	correct	position	for	q=1	

➢Both	MHD	equilibria	are	equally	plausible	due	to	the	experimental	uncertainties	

➢A	fair	agreement	is	obtained	for	the	internal	kink	linear	mode	structure	between	the	ECE	
measurement	for	fluid	simulations	with	GTC	and	XTOR-K	

Experimental	linear	validation	requires	inward	q=1	surface



Necessary	inputs	for	eigenvalue	codes/	
reduced	models	

HALO 1st	order	CoM	derivatives	on	a																								grid	

NOVA 1st	order	CoM	derivatives	on	a																								grid	

LIGKA	 1st	order	CoM	derivatives	on	a																								grid

RBQ Same	as	NOVA

(E, μ, Pφ, σ)

(E, λ, Pφ, σ)

(E, λ, Pφ, σ)



Necessary	inputs	for	initial	value	codes
XTOR-K	/	JOREK • 	Full	orbit	6D	markers	in	phase	space	cylindrical	coordinates	for	full-F	PIC	

simulations

GTC
• Gyrokinetic	5D	markers	in	Boozer	coordinates	for	full-F	PIC	simulations	
• 																	and																						derivatives	evaluated	at	Boozer	+														coordinates	
for			F	PIC	simulations	(distributions	at	gyrocenters)

MEGA
• Gyrokinetic	5D	markers	in	cylindrical	+												coordinates	for	full-F	PIC	
simulations	

• First	order	CoM	derivatives	on	a																								grid	for			F	PIC	simulations	
(distributions	at	guiding	centers)	

M3D-C1
• 																	and																						derivatives	evaluated	at	cylindrical	+														
coordinates	for			F	PIC	simulations	(distributions	at	guiding	centers)	(similar	to	
GTC)

GYSELA • Distributions	of	gyrocenters	on	a	(R,phi,Z	,									)	grid	for	full-F	semi-lagrangian	
simulations

ORB-5 • 																	and																						derivatives	evaluated	at	field	aligned	+														
coordinates	for			F	PIC	simulations	(distributions	at	gyrocenters)			(to	confirm)

FAR-3D
• Specific	fluid	closure	to	obtain	kinetic	effects	in	gyro-fluid	simulations,	kinetic	
module	currently	being	implemented

∇F |μ,v∥
∂v∥

F |μ, X

(v∥, μ) δ

(v, λ)
(E, λ, Pφ, σ) δ

(v∥, μ) δ

∇F |μ,v∥
∂v∥

F |μ, X

v∥, μ

∇F |μ,v∥
∂v∥

F |μ, X (v∥, μ) δ







Spline	pdf	and	derivatives	(trapped	orbits)



Spline	pdf	and	derivatives	(co-passing	orbits)





Precision	of	 	initialisation	in	XTOR-K𝝀

➢ Particles	initialized	on	a	
200x200	 	grid	

➢ Initialisation	precision	
satisfying	

➢ Finite	errors	due	to	
interpolation	over	the	
poloidal	plane	

(𝑃𝜑, 𝜆)
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Alpha	CoM	distributions


