

Saturation of fishbone modes by selfgenerated zonal flows and constants of motions EP distributions in tokamak plasmas

G. Brochard^{1,2}, C. Liu³, X. Wei², W. Heidbrink², Z. Lin², N. Gorelenkov³, C. Chrystal⁴, X. Du⁴, J. Bao⁵, A. R. Polevoi¹, M. Schneider¹, S. H. Kim¹, S.D. Pinches¹, P. Liu², J.H. Nicolau², H. Lütjens⁶ and ISEP team

¹ ITER organization

- ² University of California Irvine ³ Princeton Plasma Physics Laboratory
- ⁴ General Atomics
- ⁵ Chinese Academy of Science
- ⁶ École Polytechnique CPHT

I) Interplay fishbone/zonal flows in gyrokinetic simulations

- A) Experimental fishbone validation on a DIII-D discharge
- B) Predicted fishbone dynamics in ITER PFPO-2 scenario

II) Computation of CoMs EP distribution in IMAS

- A) Versatile method for coordinate transformation
- B) Application for NBI and alpha distributions in a JET-DT pulse

Outline

Importance of gyrokinetic simulations of fishbone modes for EP transport

- > Zonal flows (ZFs) can impact significantly thermal and EP transport by mitigating **microturbulence** [1] and **AEs** [2] saturation amplitudes
- > Drift-waves modes and EP-driven AEs can trigger ZFs respectively through modulational instability [3] and EPs-induced polarisation [4]
- > Fishbones known to trigger ITBs in ASDEX [5], MAST [6], HL-2A [7], EAST [8] plasmas, and were observed to destabilise strong zonal sheared flows in kinetic-**MHD** simulations [9,10]
- > A gyrokinetic formalism for self-consistent ZFs evolution is crucial to capture their collisionless damping [11], requiring kinetic treatment of thermal ions
- > GTC is applied to study self-consistently fishbone-induced EP transport in DIII-D and ITER, as a stepping stone towards upcoming cross-scale gyrokinetic simulations

[1] Z. Lin et al. 1998, *Science* [4] Z. Qiu et al. 2016, Phys. Plasmas [2] Y. Todo et al. 2012, Nucl. Fusion [5] S. Günter et al. 2001, Nucl. Fusion [3] L. Chen et al. 2000, *Phys. Plasmas* [6] A.R. Field et al. 2011, *Nucl. Fusion*

- [7] W. Chen et al. 2016, Nucl. Fusion [8] X. Gao et al. 2018, Phys. Lett. A [9] G. Brochard et al. 2020b, Nucl. Fusion
- [10] G. Wanling et al. 2023, Nucl. Fusion [11] M.N. Rosenbluth et al. 1998, *PRL*

<u>GTC capable of simulating macroscopic modes [1]</u>

> GTC has been verified and linearly validated for internal kink instability in DIII-D plasmas

 \succ Linear validation obtained between ECE and δT_{e} profiles in GTC and XTOR-K simulations [1] G. Brochard et al. 2022, Nucl. Fusion

ITER baseline pre-fusion #101006

> Analysing **ITER scenarios** as part of **ITPA-EP 15** joint activity and **ISEP US DOE theory milestones 2022**

> 15 codes from Europe, US and Asia used to study EP transport for all scales

> A baseline pre-fusion plasma is chosen by IO[1] for **macroscopic** simulations

> Scenario found ideal MHD stable [1], but **kinetic effects** need to be included

> NBI modelized in GTC with a copassing anisotropic slowing-down pdf

[1] A. R. Polevoi et al. 2020 *Nucl. Fusion* **60** 096024

DIII-D discharge #178631 as ITER matching shot

> A **DIII-D discharge** chosen for experimental validation with ITER prefusion baseline scenario (similar q, profile shapes and β_N)

- > N=1 fishbone modes experimentally **observed**, with frequencies of order 20kHz
- > NBI also modelized with a anisotropic slowing-down pdf

Fishbone unstable for DIII-D discharge

 δf^2 , $\mu B = 45$ keV, linear phase

- >Low n modes stable with maxwellian EP distributions
- > Using realistic beam, a n=1 fishbone mode destabilised past a EP beta, close to marginal stability
- >m=2 side-band is significant and extends mode structure close to plasma edge
- > Both trapped and passing particles contribute to resonant interaction
- **Resonant contribution** from passing particles is dominant

Zonal flows lower fishbone saturation amplitude

> Nonlinear GTC simulations performed keeping only n=1 mode, with and without zonal flows

> **ZFs** have a **growth rate twice of n=1 mode**, typical of force-driven ZFs generation [1] [1] Z. Qiu et al. 2016, Phys. Plasmas

> ZFs inclusion significantly lowers saturation amplitude, from $|\delta B/B_0| \sim 8 \times 10^{-3}$ to 2×10^{-3} at q_{min} , highlighting that wave-particle trapping is not always the main saturation mechanism for fishbones

Nonlinear validation against ECE measurements

 δ T (eV), without ZFs 600 q_{min}=1.09 q=2 XTOR-K n=1 500 GTC n=1 ◆ECE 400 5 ⊕ → 300 \sim 200 100 0.2 0.4 0.6 0.8 ρ_{T}

> Zonal flows inclusion allow GTC and M3D-C1 to obtain saturation amplitudes comparable with ECE [1]

> The significant **m=2 side-band** allows GTC to obtain **a quantitative agreement** with the **ECE**

> Validation to be completed with cross-scales GTC simulation for more realistic zonal flows levels [1] G. Brochard et al. 2022, to be submitted to *Phys. Rev. Lett.*

 $\delta~{\rm T_e}$ (eV), with ZFs

Outward EP transport and neutron drop

> **Zonal flows** also **lowers** the simulated **neutron** drop, providing a quantitative agreement with the experimental one, further validating GTC for fishbone simulations

> The EP density profile is **flattened** due to resonant transport ($|\delta n_{EP}/n_{EP}| \sim 15\%$ inside q_{min} without zonal flows)

Zonal flows inclusion lead to weaker EP transport ($|\delta n_{EP}/n_{EP}| \sim 3\%$ inside q_{min})

Zonal flows generate additional drift for EPs

> Hole and clump structures appear around both trapped and passing resonances

> Fishbone frequencies chirp down at saturation with and without ZFs

> ZFs provide an additional drift frequency $\delta \omega_{E,00} = -\partial_{\psi} \phi_{00}$, locking linearly resonant EPs

Zonal flows prevent more EPs to become resonant

> Precessional hole and clump stays indeed static with zonal flows, reducing

> Resonant passing EPs are detuned by ZFs, potentially due to ZFs effects on transit frequency

>ZFs prevent phase space structures from affecting new EPs, explaining fishbone mitigation by ZFs

10/30

- [2], HL-2A [3], EAST [4]

 \succ Cross-scales GTC simulations with $n \in [0,50]$ required to confirm fishbone-induced ITB

> Fishbone-induced $\omega_{E \times B}$ much larger at saturation than γ_{TEM} , which can lead to turbulence suppression > lon-ITB observed in DIII-D after fishbone bursts occuring at $t \in [1580, 1620]$ ms, as in ASDEX [1], MAST

[1] S. Günter et al. *Nucl. Fusion*, 2001 [3] W. Chen et al. *Nucl. Fusion*, 2016 [2] A. R. Field et al., Nucl. Fusion 2011 [4] X. Gao et al. *Physics Letters A* 2018

I) Interplay fishbone/zonal flows in gyrokinetic simulations

A) Experimental fishbone validation on a DIII-D discharge

B) Predicted fishbone dynamics in ITER PFPO-2 scenario

II) Computation of CoMs EP distribution in IMAS

A) Versatile method for coordinate transformation

B) Application for NBI and alpha distributions in a JET-DT pulse

Outline

Fishbone unstable with realistic beam in ITER

0.2

> Low n modes also **stable** with maxwellian fast ion kinetic effects

> With anisotropic slowing-down pdf for fast ions, a dominant n=m=1 fishbone mode is destabilized

> Similarly to the **DIII-D discharge**, the mode has a significant m=2 side-band

> Fishbone mode driven by passing particles through two drift-transit resonances [1]

[1] R. Betti et al. PRL 1993

Zonal flows also impact the ITER scenario

Mode amplitude, ITER #101006

> Nonlinear GTC simulations performed again keeping only n=1 mode, with and without zonal flows

- > Fishbone-induced $\omega_{E \times B} / \gamma_{TEM} \sim 3$ at saturation, could lead to ITB formation in this ITER scenario
- > Long time simulation with zonal flows and fishbone to be performed with GTC

> ZFs inclusion again lowers saturation amplitude, from $|\delta B/B_0| \sim 4 \times 10^{-4}$ to 1×10^{-4} at q_{min}

Marginal EP transport in ITER scenario

2

0

-2

-3

Inward and outward EP fluxes exist due to positive and negative pressure gradients

EP redistribution is marginal, up to 2% of initial density profile [1] without zonal flows. Similar levels were found for the alphafishbone in ITER 15 MA DT scenarios [2]

- NBI pressure drive too low to cause large redistribution
- Hole and clump structures form in phase space, but saturate at low amplitude

[1] G. Brochard et al. 2022, to be submitted to *Phys. Rev. Lett.*[2] G. Brochard et al. 2020b, *Nucl. Fusion*

Conclusions and perspectives

- > Zonal flows can be force-driven by fishbone modes and dominate their saturation
- Simulated fishbone saturation levels in quantitative agreement with ECE and neutron drop measurements on DIII-D with zonal flows
- > Zonal flows reduce available resonant EPs, providing the mechanism for fishbone saturation
- Fishbone-induced zonal flows may lead to microturbulence suppression, supported by ion-ITB formation after fishbone bursts in DIII-D
- Cross-scales simulations on DIII-D and ITER required to confirm fishbone-induced ITBs causality
- > High performance scenarios could be developed in ITER by triggering benign fishbones

I) Interplay fishbone/zonal flows in gyrokinetic simulations

II) Computation of CoMs EP distribution in IMAS A) Versatile method for coordinate transformation

B) Application for NBI and alpha distributions in a JET-DT pulse

Outline

A) Experimental fishbone validation on a DIII-D discharge

B) Predicted fishbone dynamics in ITER PFPO-2 scenario

Versatile method for CoM distribution construction

> A cartesian CoM grid is first built to determine **orbits' nature** and **J**_{CoM}

> **Distributions/markers** in « regular » (E,p,R,Z) coordinates are loaded from FK codes or experimental measurements

- > A C² spline of the 3D CoM distribution is defined to ensure **good numerical properties** for both **full-F** and δf codes
- > A backward $(E, \lambda, P_{\varphi}, \sigma) \rightarrow (E, p, R, Z)$ transformation is used to load markers uniformly along orbits for full-F codes
- \succ For δf codes, the weigh equation can be fully defined by using C^1 first-order CoM derivatives (using a chain rule)

Construction of a smooth CoM jacobian

 $(E, \lambda, P_{\varphi}) \rightarrow (E, \frac{v_{\parallel}}{v}, R_{mid})$ transformation > For a **given vertice** on cartesian CoM grid $(E_i, \lambda_j, P_{\varphi,k})$, the coupled set of equations on (v_{\parallel}, λ) implicit in R_{mid} is solved $v_{\parallel}(R_{mid}) = \frac{\bar{P}_{\varphi} + Ze\psi(R_{mid})}{mB(R_{mid})/B^{\varphi}(R_{mid})}$ to obtain ($\frac{\nu_{\parallel}}{R_{mid}}$) $\lambda(R_{mid}) = \left(1 - \frac{v_{\parallel(R_{mid})}^2}{v^2}\right) \frac{B_0}{B(R_{mid})}$ > This **backward transformation** on the generalized midplane does not require orbit tracing

exactly correct in 6D for the gyroangle such as $v_{\theta} = 0$

> A method based on a cartesian CoM grid $(E, \lambda, P_{\varphi})$ avoid some singularities on J_{CoM} and ΔV_{CoM} observed in [1]

$$C_{OM} \propto \sum_{\sigma} \tau_b(E, \lambda, P_{\varphi})$$
, orbit tracing necessary to ob-

in 3D, requiring a **backward transformation** to initialise markers in **5D/6D space** on each $(E, \lambda, P_{\varphi})$ vertice

-0.3 **> Transformation is performed** on **midplane**

 $R_{mid} \equiv B \cdot \nabla B = 0$, intersected by all EPs orbits [1]

[1] A. Bierwage et al. 2022, Comput. Phys. Commun.

Backward transformation and orbit classification

> The **solutions** of $\lambda[R_{mid}, v_{\parallel}(R_{mid}, P_{\varphi,k})] = \lambda_j$ are obtained numerically by scanning \boldsymbol{R}_{mid} , for $v_{\parallel} \in [-v_i, v_i]$

- > For each orbit, the algorithm finds two solutions, on the LFS and HFS of the $B \cdot \nabla B = 0$ midplane
- >8 types of orbits are identified based on the values for (R_{mid}, v_{\parallel}) on the **OLFS** and **OHFS**

> In the (P_{φ}, λ) phase space at fixed energy, the **topology** is identical to White's . A 2000x2000 grid was used

Accuracy of the backward transformation

 $(\mathbf{P}_{\phi, \mathbf{XTOR}} - \mathbf{P}_{\phi, \mathbf{target}}) / \mathbf{P}_{\phi, \mathbf{target}} \text{ (\%), } \sigma = -1,0 \text{ OHFS}$ 0.5 0 -0.5 0 -0.5 P_{ϕ} /(Ze ψ_{e})

- > The backward transformation is tested with the **XTOR-K 6D** pusher on a 200x200 (P_{ω} , λ) grid at fixed energy
- > For each target ($P_{\varphi,i}, \lambda_j$), the corresponding (R_{mid}, v_{\parallel}) are identified on the **OHFS**
- $> P_{\varphi}$ is re-computed from the markers 6D position
- > The error on P_{φ} is under 1%, showing good numerical accuracy of the backward transformation

> Similar results are obtained for λ

<u>« Analytic » construction of CoM jacobian</u>

$> J_{CoM}$ is theorically defined as $(2\pi)^2 E$

$$J_{CoM} = \frac{(Z\pi)^{-E}}{ZemB_0} \sum_{\sigma=\pm 1} \tau_B(E,\lambda)$$

- $> J_{CoM}$ is succesfully compared with the histogram of a flat, isotropic and monoenergetic distribution as $H_{CoM} = F_{CoM} \times J_{CoM}$
- > Small inaccuracies remain near the trapped-passing boundary
- > With a **realistic density profile**, most particles are located near **topological boundaries** of the (P_{ω}, λ) grid

I) Interplay fishbone/zonal flows in gyrokinetic simulations

II) Computation of CoMs EP distribution in IMAS A) Versatile method for coordinate transformation

Outline

A) Experimental fishbone validation on a DIII-D discharge

B) Predicted fishbone dynamics in ITER PFPO-2 scenario

B) Application for NBI and alpha distributions in a JET-DT pulse

Fishbone-induced ion ITBs in JET-DT

- > **JET DT pulse** #99948 experienced a 2x increased fusion gain with Q=0.32 after onset of **fishbone bursts**
- > **Ion-ITB formation** is visible after t=9s at q=2, **no electron ITB** identified
- > There is a **possible causality** between **fishbone** starting at t=9s and the ion-ITB, similar to [1] on **DIII-D**
- > Nonlinear gyrokinetic and **kinetic-MHD** need to be performed with realistic CoM pds to verify this causality

 $^{\rho_{T}}$ [1] G. Brochard et al. 2023, submitted to *Phys. Rev. Lett.* 21/30

JET-DT #99948 : Fast-ion distributions

3.5 3.5

0.5

3.5

- > Distributions in the (E, $\frac{v_{\parallel}}{1}$, R,Z) phase space are provided from **TRANSP-NUBEAM** for alphas and NBI
- > 256k markers are used for both alphas and **NBI** to reproduced distributions

> Resolution in the $(E, \frac{v_{\parallel}}{v})$ space is relatively ok : N_E = 70 (NBI) – 340(α), $N_{v_{\parallel}}$ = 50.

- A low spatial resolution is used : 220 grid points on ~10 flux surfaces. It restricts heavily P_{φ} resolution in CoM space. A 2D cartesian re-mapping with a 18x18 grid is performed
- A H-minority heated by ICRH is also present, but not modelled by NUBEAM

22/30

Jacobian construction on CoM grid

Vol_{CoM,ana} (eV.T.m⁻²), σ =+1, D, E=80keV $\times 10^{10}$ 1.5 0.5 -0.5 0 P /Z ψ_{edge}

> The **CoM grid** used has the resolution : (N_E =50, N_λ =25, N_{P_m} =20)

 $> \Delta V_{CoM} = J_{CoM} \Delta E \Delta \lambda \Delta P_{\varphi}$ is rather smooth on the CoM grid

Co-passing and **counter-passing** orbits treated **separately** when they both exist on CoM grid (degeneracy)

> Trapped orbits contribution split in two to ensure J_{CoM} continuity over trapped-passing boundary

<u>Alternative Jacobian construction</u>

 $> \Delta V_{C_0M}$ can also be computed numerically using the (E,p,R,Z)->CoM coordinate transform as

 $\Delta V_{CoM}(E,\lambda,P_{\varphi},\sigma) =$

> The two methods compare well, except at the domain edge due to the 3rd order interpolation

> Both Jacobian methods can be used to compute CoM distributions

$$\sum_{i} \delta_{3}(\mathbf{X}_{EpRZ,i} - \mathbf{X}_{CoM}) \Delta E \Delta \lambda \Delta P_{\varphi}$$

Interpolation between (E,p,R,Z)-> CoM distribution

> The CoM D beam distribution is computed as

 $> F_{D,CoM}$ needs also to be separated in two between co-going and counter-going orbits ($\sigma = \pm 1$)

$$F_D(E, \lambda, P_{\varphi}, \sigma) = \sum_{i}^{N_{EpRZ}} \delta_3(\mathsf{X}_{EpRZ,i} - \mathsf{X}_{CoM})F_D(E, p, R, Z)\frac{\Delta V}{\Delta V}$$

Spline construction, D beam

$>_{7^{10^{12}}} > C^2$ CoM distribution defined with 2nd order 3D B-spline :

 $F_{D,s}(E,\lambda,P_{\varphi}) = \sum_{i=0} \sum_{j=0} \sum_{k=0} a_{ijk} x_E^i x_{\lambda}^j x_{P_{\varphi}}^k, \ x \in [0,1]$ > **Distribution on CoM grid** slightly

adjusted to satisfy C² condition

$$F(x_{i+1}) = \frac{3}{4}F(x_i) + \frac{1}{2}F'(x_i) + \frac{1}{4}F(x_{i+2})$$

- Samples out of topological boundaries removed via backward CoM -> (E,p,R,Z) transformation
- Markers in 5D/6D full-F codes (cylindrical/Boozer coordinates) initialised via backward transformation

26/30

<u>1st order derivatives in CoM space</u>

> First order C^1 derivatives of the CoM distribution directly obtained from the 3D spline

> In δF codes, the derivatives used in the weight equation can be computed through the chain rule

$$\nabla F|_{\mu,v_{||}} = \nabla E|_{\mu,v_{||}} \frac{\partial F}{\partial E} + \nabla \lambda |_{\mu,v_{||}} \frac{\partial F}{\partial \lambda} + \nabla P_{\varphi}|_{\mu,v_{||}} \frac{\partial F}{\partial P_{\varphi}}$$

> The forward transformation (E,p,R,Z) -> CoM can be used for each marker to determine which of the splined CoM distributions to use (co-going or counter-going)

$$\frac{\partial F}{\partial v_{||}} \Big|_{\mu,X} = \frac{\partial E}{\partial v_{||}} \Big|_{\mu,X} \frac{\partial F}{\partial E} + \frac{\partial \lambda}{\partial v_{||}} \Big|_{\mu,X} \frac{\partial F}{\partial \lambda} + \frac{\partial P_{\varphi}}{\partial v_{||}} \Big|_{\mu,X} \frac{\partial F}{\partial P_{\varphi}}\Big|_{\mu,X} \frac{\partial F}{\partial P$$

EP frequencies in CoM space

Conclusions

- Fokker-Planck inputs was presented
- orbit characterisation in CoM space
- CoM distribution transformation method
- between **co-going** and **counter-going topological regions**
- > 3D B-spline are used to define C^2 CoM distributions and their C^1 first-order derivatives. The **backward transformation** is used to **enforce the CoM space topological boundaries**

> A versatile method to initialise CoM distributions in full-F and δF codes from experimental and

> An analytical backward CoM -> (E,p,R,Z) transformation was successfully created, allowing precise

> Using XTOR-K's particle pusher, the CoM Jacobian is accurately computed on a cartesian CoM grid

> A JET-DT pulse with potential fishbone-induced microturbulence stabilisation is used to test the

> The NUBEAM (E,p,R,Z) distribution is transformed into a CoM distribution, separating CoM space

29/30

- > Re-process the D-T beam and alpha distributions with NUBEAM input using finer resolution
- \succ Perform loop forward $(E, p, R, Z) \rightarrow (E, \lambda, P_{\varphi}, \sigma)$ and backward $(E, \lambda, P_{\varphi}, \sigma) \rightarrow (E, p, R, Z)$ transformations to quantity errors made during distribution conversion
- \succ Test the CoM initialisation in first principles codes such as XTOR-K (full-F) and GTC (δF)
- > Implement the method in IMAS as to be compatible with the EP stability workflow
- > Accommodate IMAS outputs for all EP codes across the EP community
- > Perform nonlinear kinetic-MHD and gyrokinetic simulations to study fishbone-microturbulence interaction for the JET-DT pulse #99948

Perspectives

Nonlinear validation against ECE measurements

Sensitivity of fishbone amplitude on qmin

Safety factor profiles

> CHEASE used to produced a set of q profiles with different q_{min} values

> Saturation amplitudes sensitive to q_{min} values and magnetic shear

> Zonal flows inclusion decreases significantly saturation amplitude for all cases

Saturation amplitude 800 no ZFs, CHEASE no ZFs, EFIT ZFs, CHEASE 700 ZFs, EFIT 600 δT_e (eV) 500 400 300 Experimental saturation 200 1.15 1.05 1.1 **q**_{min}

Zonal flows prevent large EP radial excursion

$\partial_{t}\delta f$, no ZFs, t=0.11655ms

> EP transport from passing resonance stops earlier with zonal flows

Zonal flows prevent hole and **clump** in **trapped** region to **move** as **mode chirps down**

$\partial_{1}\delta f$, with ZFs, t=0.11655ms

DIII-D

ITER

GTC gyrokinetic model

Nonlinear gyrokinetic equation Poisson equation

$$(\partial_t + \dot{\mathbf{X}} \cdot \nabla + \dot{v}_{\parallel} \cdot \nabla_{v_{\parallel}})F = 0 \qquad \frac{Z_i^2 n_i}{T_i} (\phi - \tilde{\phi}) = \sum_s q_s n_s \delta n_s \qquad en_e \delta u_{\parallel,e} = \nabla_{\perp}^2 \delta A_{\parallel} + e \sum_{s \neq e} Z_s n_s \delta n_s \qquad \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \beta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s \delta B_{\parallel} B_0 (1 + \sum_s \theta_s) = -4\pi \sum_s \theta_s$$

Electron continuity equation

$$\frac{\partial \delta n_e}{\partial t} = -\nabla \cdot \left[n_{e,0} u_{e,\parallel} \frac{\mathbf{B}_0 + \delta \mathbf{B}_\perp}{B_0} + n_e \mathbf{v}_E - \frac{P_{e,\parallel} \mathbf{b}_0 \times \boldsymbol{\kappa}}{eB_0} - \frac{P_{e,\perp} \mathbf{b}_0 \times \nabla B_0}{eB_0^2} - \frac{P_{e,\perp} \mathbf{b}_0 \times \nabla \delta B_\parallel}{eB_0^2} \right]$$

Adiabatic perturbed electron pressure

$$\delta P_{e,\perp} = e n_{e,0} \phi_{eff} + \frac{\partial (n_{e,0} T_{e,0})}{\partial \psi_0} \delta \psi - 2 \frac{\delta B_{\parallel}}{B_0} n_{e,0} T_{e,0} \quad \delta P_{e,\parallel} = e n_{e,0} \phi_{eff} + \frac{\partial (n_{e,0} T_{e,0})}{\partial \psi_0} \delta \psi - \frac{\delta B_{\parallel}}{B_0} n_{e,0} T_{e,0} \quad \delta P_{e,\parallel} = e n_{e,0} \phi_{eff} + \frac{\partial (n_{e,0} T_{e,0})}{\partial \psi_0} \delta \psi - \frac{\delta B_{\parallel}}{B_0} n_{e,0} T_{e,0} \quad \delta P_{e,\parallel} = e n_{e,0} \phi_{eff} + \frac{\partial (n_{e,0} T_{e,0})}{\partial \psi_0} \delta \psi - \frac{\delta B_{\parallel}}{B_0} n_{e,0} T_{e,0} \quad \delta P_{e,\parallel} = e n_{e,0} \phi_{eff} + \frac{\partial (n_{e,0} T_{e,0})}{\partial \psi_0} \delta \psi - \frac{\delta B_{\parallel}}{B_0} n_{e,0} T_{e,0} \quad \delta P_{e,\parallel} = e n_{e,0} \phi_{eff} + \frac{\partial (n_{e,0} T_{e,0})}{\partial \psi_0} \delta \psi - \frac{\delta B_{\parallel}}{B_0} n_{e,0} T_{e,0} \quad \delta P_{e,\parallel} = e n_{e,0} \phi_{eff} + \frac{\partial (n_{e,0} T_{e,0})}{\partial \psi_0} \delta \psi - \frac{\delta B_{\parallel}}{B_0} n_{e,0} T_{e,0} \quad \delta P_{e,\parallel} = e n_{e,0} \phi_{eff} + \frac{\partial (n_{e,0} T_{e,0})}{\partial \psi_0} \delta \psi - \frac{\delta B_{\parallel}}{B_0} n_{e,0} T_{e,0} \quad \delta P_{e,\parallel} = e n_{e,0} \phi_{eff} + \frac{\partial (n_{e,0} T_{e,0})}{\partial \psi_0} \delta \psi - \frac{\delta B_{\parallel}}{B_0} n_{e,0} T_{e,0} \quad \delta P_{e,\parallel} = e n_{e,0} \phi_{eff} + \frac{\partial (n_{e,0} T_{e,0})}{\partial \psi_0} \delta \psi - \frac{\delta B_{\parallel}}{B_0} n_{e,0} T_{e,0} \quad \delta P_{e,\parallel} = e n_{e,0} \phi_{eff} + \frac{\partial (n_{e,0} T_{e,0})}{\partial \psi_0} \delta \psi - \frac{\delta B_{\parallel}}{B_0} n_{e,0} T_{e,0} \quad \delta P_{e,\parallel} = e n_{e,0} \phi_{eff} + \frac{\partial (n_{e,0} T_{e,0})}{\partial \psi_0} \delta \psi - \frac{\delta B_{\parallel}}{B_0} n_{e,0} \quad \delta P_{e,\parallel} = e n_{e,0} \phi_{eff} + \frac{\partial (n_{e,0} T_{e,0})}{\partial \psi_0} \delta \psi - \frac{\delta B_{\parallel}}{B_0} n_{e,0} \quad \delta P_{e,\parallel} = e n_{e,0} \phi_{eff} + \frac{\partial (n_{e,0} T_{e,0})}{\partial \psi_0} \delta \psi - \frac{\delta B_{\parallel}}{B_0} n_{e,0} \quad \delta P_{e,\parallel} = e n_{e,0} \phi_{eff} + \frac{\partial (n_{e,0} T_{e,0})}{\partial \psi_0} \delta \psi - \frac{\delta B_{\parallel}}{B_0} n_{e,0} \quad \delta P_{e,\parallel} = e n_{e,0} \phi_{e,\parallel} \quad \delta P_{e,\parallel} \quad \delta P_{e,\parallel$$

Ampère equations

[1] W.Deng et al., *Nucl. Fusion*, **52**, 023005 (2012)
[2] G.Dong et al., *Phys. Plasmas*, 24, 081205 (2017)

Reduction to linear ideal MHD

 \succ

$$\begin{split} \frac{\omega^2}{v_A^2} \nabla_{\perp}^2 \phi + \mathbf{B}_0 \cdot \nabla \left[\frac{\nabla_{\perp}^2(k_{\parallel}\phi)}{B_0} \right] - \left(\nabla(k_{\parallel}\phi) \times \mathbf{b}_0 \right) \cdot \nabla \left(\frac{J_{\parallel,0}}{\mu_0 e B_0} \right) + \frac{\boldsymbol{\kappa} \times \mathbf{B}_0}{e B_0^2} \cdot \nabla \left(2P_0 \frac{\delta B_{\parallel}}{B_0} - \delta P_{\parallel} - \delta P_{\perp} \right) \\ - \frac{P_0}{e B_0^2} \mathbf{b}_0 \times \nabla B_0 \cdot \frac{\nabla \delta B_{\parallel}}{B_0} - \frac{\mathbf{b}_0 \times \nabla \delta B_{\parallel}}{e B_0} \cdot \nabla P_0 = 0 \\ \begin{bmatrix} 1 \end{bmatrix} \text{W.Deng et al., Nucl. Fusion, 52, 023005 (20)} \\ \begin{bmatrix} 2 \end{bmatrix} \text{G.Dong et al., Phys. Plasmas, 24, 081205 (20)} \end{bmatrix}$$

Parallel Ampère law

This physical model leads to the following dispersion relation

Identical mode structure for electrostatic potential

Experimental linear validation requires inward q=1 surface

> The EFIT reconstruction needs to be adjusted to recover a correct position for q=1

> Both MHD equilibria are equally plausible due to the experimental uncertainties

> A fair agreement is obtained for the internal kink linear mode structure between the ECE **measurement** for **fluid** simulations with **GTC** and **XTOR-K**

<u>Necessary inputs for eigenvalue codes/</u> <u>reduced models</u>

HALO	1st order CoN
NOVA	1st order CoN
LIGKA	1st order CoN
RBQ	

derivatives on a (E, μ, P_{φ}, g) rid

I derivatives on a

$$(E, \lambda, P_{\varphi}, \sigma)$$
grid

derivatives on a

$$(E,\lambda,P_{\varphi},\sigma)$$

grid

Same as NOVA

Necessary inputs for initial value codes

XTOR-K / JOREK	 Full orbit 6D markers in phase s simulations
GTC	• Gyrokinetic 5D markers in Booz • $\nabla F _{\mu,\eta} = \partial_{\nu_{\parallel}} F _{\mu} derivations$ for FPIC simulations (distributions)
MEGA	 Gyrokinetic 5D markers in cyline simulations First order CoM derivatives on a (distributions at guiding centers)
M3D-C1	• $\nabla F _{\mu,\eta}d = \partial_{\nu_{\parallel}}F \mu$ derivation coordinates for FPIC simulation GTC)
GYSELA	 Distributions of gyrocenters on simulations
ORB-5	• $\nabla F _{and} = \partial_{v_{\parallel}} F \mu_{derivan}$ coordinates for FPIC simulatio
FAR-3D	 Specific fluid closure to obtain k module currently being implemented

space cylindrical coordinates for full-F PIC

2er coordinates for full-F PIC simulations atives evaluated at **Boozer** + $(v_{\parallel}c_{\#}\phi)$ ordinates tions at **gyrocenters**) **a grid for F PIC simulations a grid for F PIC simulations s**) **a tives evaluated at cylindrical** + (v_{\parallel}, μ)

ons (distributions at guiding centers) (similar to

a (R, phi, Z, v_{\parallel} , g_{rid} for full-F semi-lagrangian

atives evaluated at **field aligned +** (v_{\parallel}, μ) ons (distributions at **gyrocenters**) (to confirm) kinetic effects in gyro-fluid simulations, kinetic ented

 δ

 δ

 δ

Spline pdf and derivatives (trapped orbits)

Spline pdf and derivatives (co-passing orbits)

Precision of *_{<i>i*} **initialisation in XTOR-K**

- > Particles initialized on a 200x200 (P_φ, λ) grid
- > Initialisation precision satisfying
- > Finite errors due to interpolation over the poloidal plane

Alpha CoM distributions

