JET Task Force Meeting

E. Aymerich¹, A. Fanni¹, G. Sias¹, S. Carcangiu¹, B. Cannas¹, A. Murari², A. Pau³ and JET Contributors

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Outline

➢Introduction and Background

- Motivation and previous work
- Database

Warning Time Indicator (WTI) Algorithm

- Benchmark analysis
- Construction of WTI
- Parameter optimization

> <u>Validation of WTI with the GTM</u>

- Automatic Ti: analysis and comparison
- Manual Ti Vs Automatic Ti: GTM performance comparison
- Database upgrade
- GTM automatic update for recent campaigns

Conclusions

Data-based disruption predictors

- Need to be updated, as the operating scenario of the machine changes with time
- Need to provide an interpretable output, to be employed in a disruption avoidance scheme (detection of specific events)
- Supervised data-based models need a labelling of the samples to be trained
- Identification of the pre-disruptive phase of the discharge
 - The warning Time (Ti) is a **reference time** for *training* the predictive model
 - Identification of 3 "classes"
- NonDisr. shots: Ipla flat-top phase for safe shots [T₀ - T_{end}];
- Disr. non-disrupted Phase: Ipla flat-top phase for disruptive discharges up to time identifying the start of the relevant chain of events 'destabilizing' the discharge [T₀ - T_i];
- **Disr. pre-disruptive Phase:** from the Ti up to the disruption [**T**_i **T**_d].

Introduction & Background Previous results

In [1], the Warning Times were obtained through a manual analysis

[1]: A.Pau et al., "A Machine Learning approach based on Generative topographic mapping for disruption prevention and avoidance at JET", Nucl. Fusion 2019, 106017 (22pp).

2011-2013 ILW campaigns (C28-C30) 2016 ILW campaign (C36)

- From previous analyses
- Mainly low power
- Manual Ti are known
- Many disruptions evolved until the loss of plasma current

Same selection criteria

- HRTS, Bolometer and Li available
- X-point configuration
- No DMV (before tD)
- No VDE

132 disrupted
115 regularly terminated

29 disrupted 41 regularly terminated

Manual Ti not known
Many disruptions killed with DMV

High power discharges

New dataset

WT/ Algorithm Statistical analysis on C28-C30

The plasma parameter distribution of the safe shots overlaps the distribution of the non-disrupted phase

After Ti for disrupted shots a clear shift of the plasma parameters is observed!

We analyze the parameter value distribution during the discharge evolution

#81916 (win 500 ms) Safe distribution

WTI Algorithm Example of construction

 $\sum_{i=1}^{B} P_i^2$

At each time instant **t** two similarity metrics are computed between the safe distribution and: Metric: Cosine $s_{Cos} = \frac{\sum_{i=1}^{B} P_i Q_i}{\int_{a} \sum_{i=1}^{B} P_i Q_i}$

1. The plasma parameter before **t** = 2. the plasma parameter after **t**

The difference among these 2 truncated to 0 weighs the standard deviation

WTI Algorithm

Combining the plasma parameters

Identification of a threshold (WTI):

We used the 99th percentile of the WTI distribution in safe pulses

Methods for the detection: Signal higher than threshold for k consecutive samples

WT/ Algorithm Examples

WTI Validation C28-C30 Campaigns: Mapping

The two maps have quite similar composition:

a	I) GTMc28-c30-ман				b) GTM c28-c30-aut				
Type of	Numb	% of	% of	% samples	Type of	Numb	% of	% of	% samples
cell	er of	cluste	samples	of a class	cell	er of	cluste	samples	of a class
	cells	rs	in the	in a cell of		cells	rs	in the	in a cell of
			clusters	the same				clusters	the same
				class					class
Safe	861	34.44	40.74	79.17	Safe	787	31.48	35.92	75.25
Disrupted	1109	44.36	41.15	84.74	Disrupted	1176	47.04	42.60	81.51
Mixed	392	15.68	18.12	-	Mixed	414	16.56	21.48	-
Empty	138	5.52	-	-	Empty	123	4.92	-	-

• The number of cells are very similar

• the percentage of samples falling in the mixed grey clusters differs by about 3% (related to **map discriminating power**)

WTI Validation C28-C30 Campaigns: Prediction

GTM7+LM

time [s]

Training set prediction errors

	GTM _{C28-C30-MAN}	GTM _{C28-C30-AUT}
MA	0	0
TD	1	1
FA	0	0

Test set prediction errors

	GTM _{C28-C30-MAN}	GTM _{C28-C30-AUT}
MA	1	1
TD	0	0
FA	6	3

WTI Validation Statistical analysis on a more recent campaign 🜔

New Dataset: 2016 Campaign (C36)

WT/ Validation Statistical analysis on a more recent campaign

New Dataset: 2016 Campaign (C36)

Before Ti

After Ti

Results Validation Unsupervised learning

Results Validation Unsupervised learning

WTI Validation Projection of a disrupted discharge

No sawteeth. But Zeff rises, possibly due to mid-z impurities. End of pulse stable, but mode lock and disruption at the very end

Impurity Accumulation pattern:

- Decrease of Te_{pf}
- Increase of Ne_{pf}
- Increase of Rad_{pf-CVA}

ML signal rises at the very end

General concepts:

- the integration of ML models with physics-based models (for plasma control and in a disruption avoidance framework) requires intepretability!
- the automatic Warning Times automate the predictive model update while not compromising the interpretability of the model itself

The WTI algorithm

- exploits intrinsic data properties (distance between the safe and disrupted distribution of each parameter) to detect the pre-disruptive phase of a disruption
- can help automating the analyses and the predictive model update in an interpretable machine learning framework
- has led to very good results in disruption prediction in the C28-C30 dataset
- has been validated with C36 shots, with an unsupervised algorithm (GTM), providing similar topological properties and well-defined map borders

BACKUP SLIDES

Plasma parameter	Definition
Te_{pf}: electron temperature peaking factor	$Te_{pf} = \frac{mean(Te_{Core})}{mean(Te_{all})}$
Ne_{pf} : electron density peaking factor	$Ne_{pf} = \frac{mean(Ne_{Core})}{mean(Ne_{all})}$
Rad_{pf-CVA}: core peaking factor	$Rad_{pf-CVA} = \frac{mean (Rad_{Core})}{mean (Rad_{All} - Rad_{XDIV})}$
Rad_{pf-X-DIV}: <i>divertor radiation peaking factor</i>	$Rad_{pf-XDIV} = \frac{mean \left(Rad_{XDIV}\right)}{mean \left(Rad_{All} - Rad_{Core}\right)}$
PFRAC: fraction of P _{rad} with respect to the P _{tot}	$PFRAC = \frac{P_{rad}}{P_{tot}}$
li: internal inductance	Signal from JET database

The model Generative Topographic Mapping

It is an unsupervised machine learning algorithm, hence it exploits only data properties [2]

- It maps a data space $t \in \Re^D$ in a latent space $x \in \Re^L$
- The mapping function is a linear combination of functions $\Phi: y(x, W) = W \cdot \Phi(x)$
- The algorithm models data uncertainty as gaussian noise
- An Expectation-Maximization (EM) procedure is used to update the model
- The algorithm **preserves** the topographic ordering properties of the data space

[3]: A. Pau, "Techniques for prediction of disruptions on TOKAMAKS" [Ph.D Thesis], http://paduaresearch.cab.unipd.it/6664/, 2014

Enrico Aymerich| JET TFM, Culham (UK) | 7/04/2020 | Page 23

Data space

WTI Algorithm Radiation parameters weights

WTI Algorithm Radiation parameters weights

Further analyses Some recent discharges

Further analyses A recent safe discharge

Enrico Aymerich| JET TFM, Culham (UK) | 7/04/2020 | Page 27

Further analyses A recent disrupted discharge

WTI Validation Projection of a disrupted discharge

WT/ Validation Projection of a disrupted discharge

ML signal rises at the very end

Comment in a shotlist given by Peter Lomas No sawteeth. But Zeff rises, possibly due to mid-z impurities. End of pulse stable, but mode lock and disruption at the very end

