

M18-48 report: Impact of energetic He ions on the dynamics of L-mode and H-mode mixed plasmas

Y. Kazakov, J. Garcia, V. Kiptily, M. Nocente, E. Delabie, M. Dreval, E. Solano, H. Weisen and M18-48 Team

JET TF Meeting, 07 April 2020

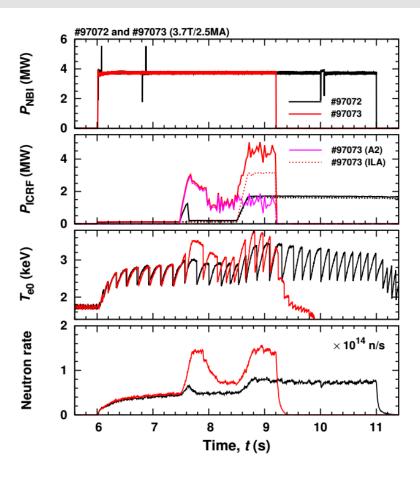
https://users.euro-fusion.org/tfwiki/index.php/M18-48:_Impact_of_energetic_He_ions_on_the_dynamics_of_L-mode_and_H-mode_mixed_plasmas

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Experiment deliverables

	SL	EIC	DC	SC
Early shift (18/03/2020)	M. Maslov, Ph. Jacquet	S. Hotchin	Z. Stancar	Y. Kazakov
Late shift (18/03/2020)	F. Nave, M. Lennholm	B. Graham	E. Solano	J. Garcia

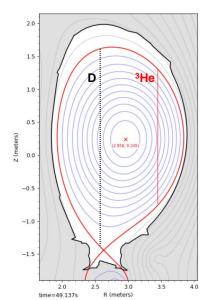
M18-48:


TFL J. Garcia, E. de la Luna

RSL M. Maslov SC Y. Kazakov

- D1: Determine the impact of MeV-range He ions on plasma transport under ITER-relevant conditions of dominant electron heating
- D2: Compare the 3-ion D-(³He)-H ICRH scheme absorption, heating and fast-ion generation in on-axis conditions wrt off-axis as expected in ITER
- D3: Evaluate electron heating from the post-sawteeth $T_{\rm e0}$ recovery rate in plasmas with MeV-range He ions in view of DT
- D4: Determine the 3-ion D-(³He)-H ICRH scheme coupling, absorption and impact on energy confinement in H-mode plasmas
- + M18-11 references for C40 with TIM-equivalent GIMs (3.7T/2.5MA, no ³He puff) [on 18/03/2020, we didn't know that M18-11 was de-selected from the C40 list]

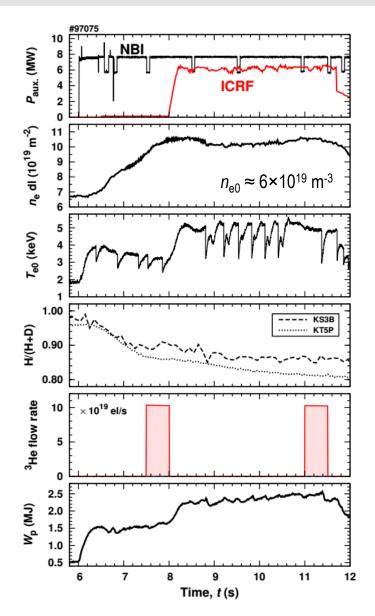
C40 references: 3.7T/2.5MA, no ³He puff


- #97072: H/(H+D) ≈ 0.90-0.95,
 NBI, @46.0-51.0s, 3.7MW,
 ICRF, 1.7MW (ILA), A2 antennas tripped
- Gas fueling with T-equivalent GIMs

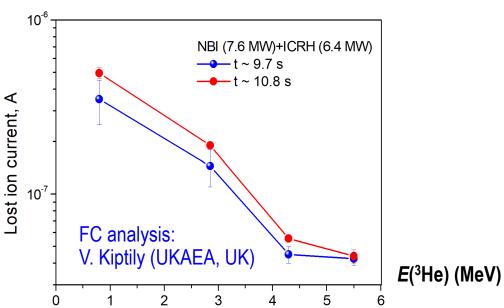
 Generation of energetic D ions not as efficient as in #91256 (2.5MW with A2 ICRF antennas), why (?)

- \rightarrow A2 vs. ILA antenna spectrum (k_{\parallel})
- → Competitive off-axis ICRF absorption by residual ³He (?)

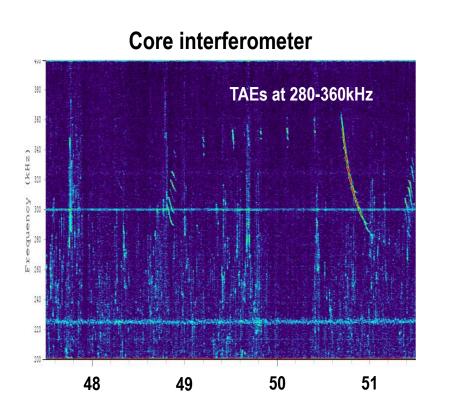
Changed ³He fueling strategy on the fly:

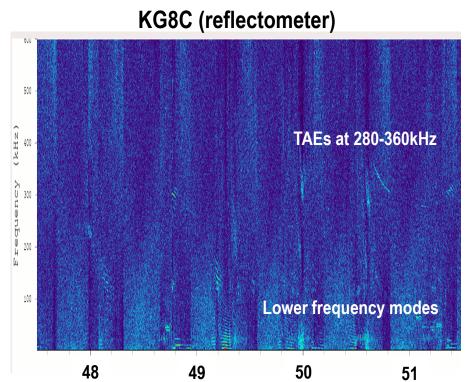

³He RTC (offset level unknown)

→ ³He feedforward fueling

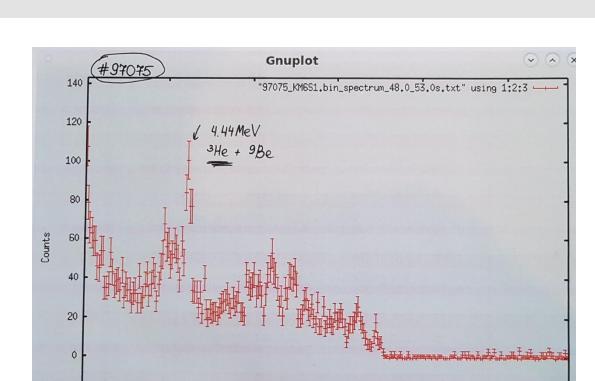

#97073: hotspot stop at @49.2s

(D1) Generation of MeV-range ³He ions with on-axis 3-ion ICRF scheme




- #97075: first ³He pulse (10:50)
- Feedforward ³He fueling (@47.5-48.0s; @51.0-51.5s)
- Energetic ³He ions generated with ICRF
 - → gamma-ray measurements
 - → AE modes (next slide)
 - → Faraday cup data
 - → long-period sawteeth (@50.4-51.4s)

AE modes observed in #97075



Core interferometer and KG8C analysis: M. Dreval (KIPT, Ukraine)

Presence of MeV-range ³He ions in #97075: gamma-ray measurements

Multiple gamma-ray lines associated with fast ³He ions

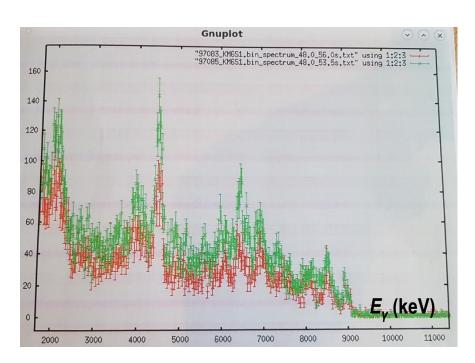
4000

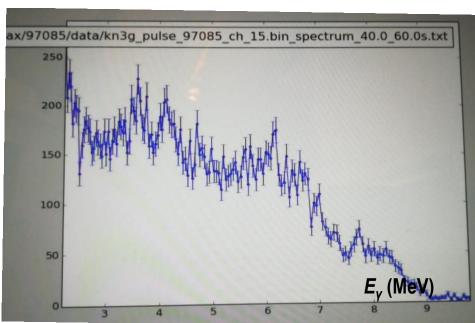
6000

-20

Gamma-ray measurements: M. Nocente (Milano Univ., Italy), V. Kiptily (UKAEA, UK)

8000


Energy (keV)


10000

12000

Presence of MeV-range ³He ions: gamma-ray measurements

- Multiple gamma-ray lines associated with fast ³He ions
- Good quality gamma-ray measurements: M. Nocente, D. Rigamonti (Milano Univ., Italy)
- #97085 (3He < 0.1%): gamma peaks seen in the KN3G camera

(D2) ITER-relevant H-mode access with off-axis 3-ion ICRF scheme

JET #97084: mix H-D \approx 75%:25%

Equivalent ITER mix (PFPO-II): Hydrogen + ≈12-13% ⁴He

Feedforward ³He fueling for ICRF $\rightarrow n(^{3}\text{He})/n_{e} \approx 0.1\%$

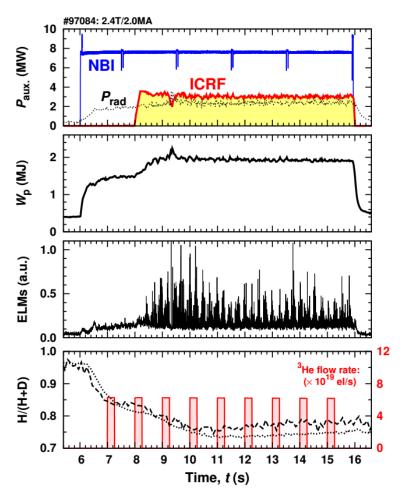
³He ICRF resonance (2.4T/33MHz): far off-axis, $(r/a)_{HES} \approx 0.8$

Equivalent location as for ITER at $B_0 = 2.9-3.0T$ (40MHz)

L-mode with 8MW NBI →

ELMy H-mode with 8MW NBI + 3MW 3-ion ICRF scheme

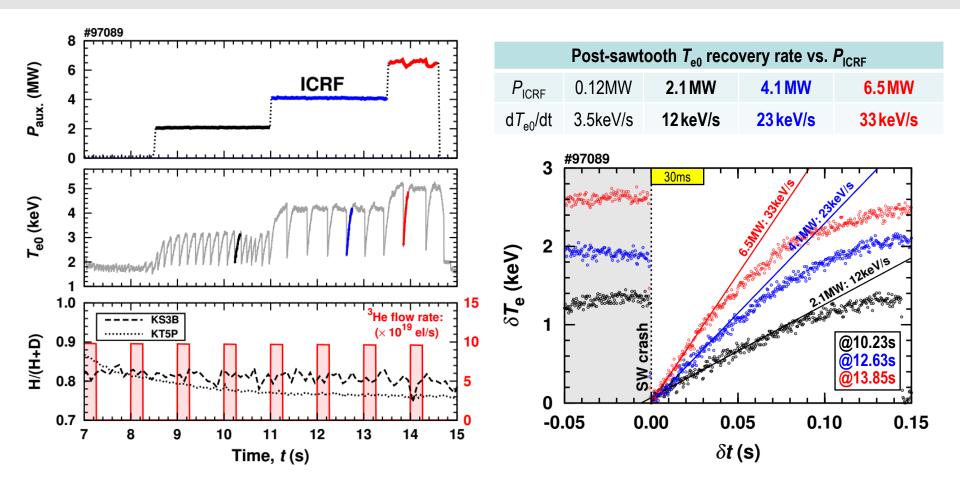
- Good plasma heating with far off-axis 3-ion ICRF scheme confirmed (earlier observed on AUG)
- Stable ELMy H-mode in majority hydrogen plasma achieved


Future developments in H/4He plasmas on JET (2020):

- Proof-of-principle demonstration of the heating scheme in non-active plasmas (M18-11, SC: Y. Kazakov)
- L-H transition optimization using the 3-ion ICRF scheme (M18-13, SC: E. Solano)

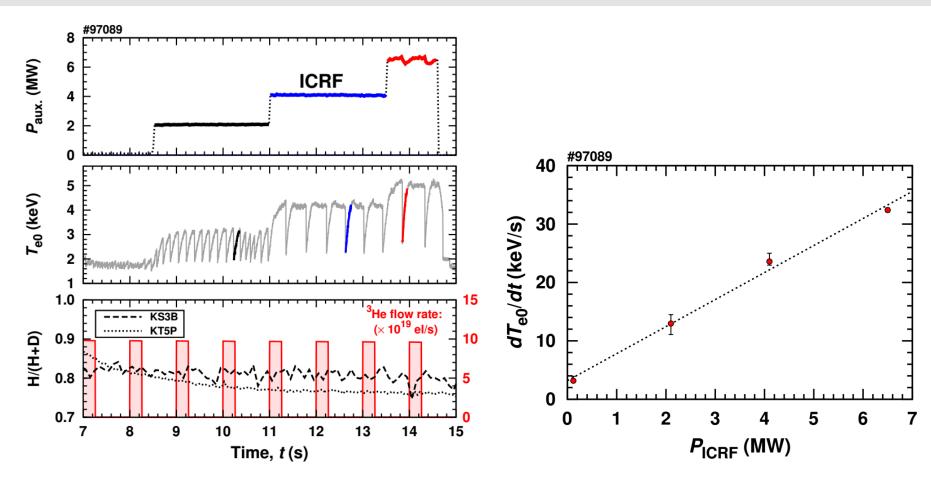
9

(D2) ITER-relevant H-mode access with off-axis 3-ion ICRF scheme



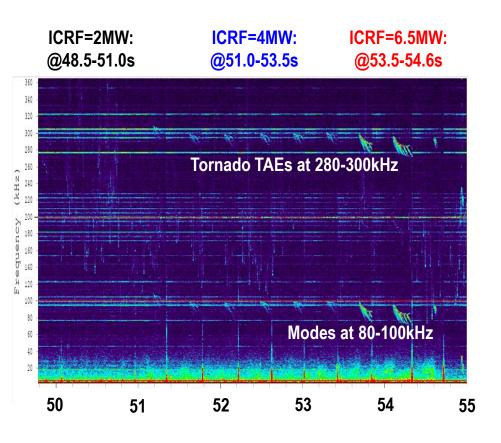
- #97084: feedforward ³He fueling
 6.3e19 el/s (25% duty cycle) → ³He ~ 0.1% (KT5A)
- C39 plasma mix: H + 4 He (~10-15%) + 3 He (< 1%) He measurement $\approx n({}^{4}$ He)/ $n_{\rm e}$ (RTC scheme) 3 He feedforward fueling: which level is optimal (?)
- Request for extra time in C38B extension (H-D mix):
 - \rightarrow calibration for $n(^{3}\text{He})/n_{e}$ vs. feedforward ^{3}He fueling
 - → good quality KK3 data (n/a in #97084)

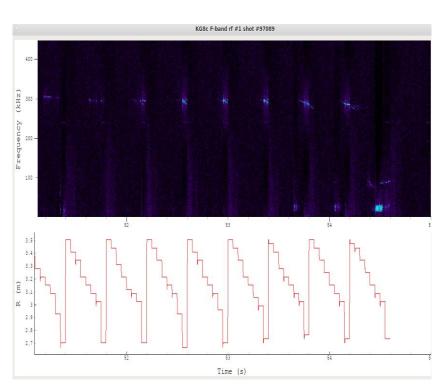
(D3) Post-sawtooth $T_{\rm e0}$ recovery rate: demonstrate alpha heating in DTE2



- #97089, three ICRF power steps (dipole phasing): $P_{\rm ICRF}$ = 2.1MW \rightarrow 4.1MW \rightarrow 6.5MW $n(^3{\rm He})/n_{\rm e}$ < 0.1% (KT5A; E. Delabie)
- T_{e0} recovery rate scales with ICRF power (fast-ion electron heating)
 - → promising way to demonstrate **alpha particle heating** in the dedicated DTE2 scenario [H. Weisen]

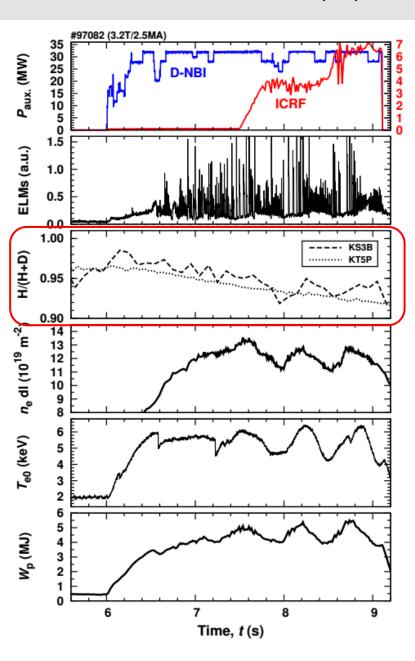
(D3) Post-sawtooth $T_{\rm e0}$ recovery rate: demonstrate alpha heating in DTE2





- #97089, three ICRF power steps (dipole phasing): $P_{\rm ICRF}$ = 2.1MW \rightarrow 4.1MW \rightarrow 6.5MW $n(^3{\rm He})/n_{\rm e}$ < 0.1% (KT5A; E. Delabie)
- T_{e0} recovery rate scales with ICRF power (fast-ion electron heating)
 - → promising way to demonstrate alpha particle heating in the dedicated DTE2 scenario [H. Weisen]

AE modes observed in #97089



- Core interferometer and KG8C analysis (preliminary): M. Dreval (KIPT, Ukraine)
- Frequency range of TAEs consistent with earlier observations at JET
 [Y. Kazakov et al., Nature Physics (2017); V.G. Kiptily et al., Nucl. Fusion (2020)]

(D4) H-mode studies

First test in #97082:

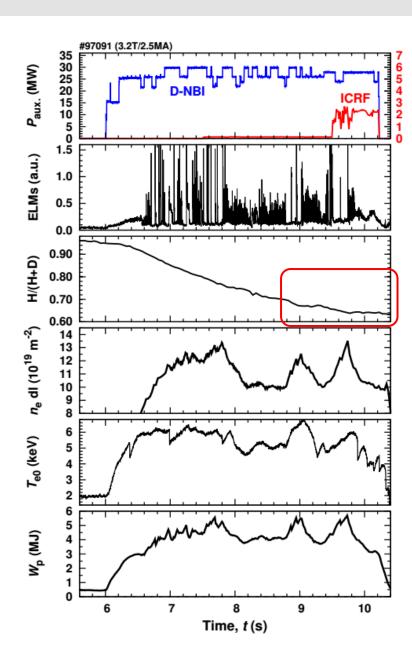
- Excellent NBI=32MW and RF=6.7MW, P_{aux.} ≈ 39MW
- $n(^{3}\text{He})/n_{e} \approx 0.1\text{-}0.3\%$ (KT5A, E. Delabie) (continuous puff, 1.1e20 el/s)
- Fueling: H gas (no D) + 32MW D-NBI

expected: $H/(H+D) \approx 0.80-0.85$

measured: $H/(H+D) \approx 0.94$

→ Almost pure H plasma, not good H/(H+D) for the 3-ion ICRF scheme

→ Good news for M18-10 (D-NBI in T-rich plasma, $T/(T+D) \approx 0.90-0.95$?)


→ Interesting pulse for H-mode and ELM-analysis: H-mode in H plasma at high B_t

In preparation for #97082, we lost #97081 (no NBI)

(D4) H-mode studies

#97091 (last pulse of M18-48):

- No ³He fueling (cleaning pulse)
- H/(H+D) < 0.70: not good for the 3-ion ICRF scheme with ³He (poor single-pass ICRF absorption)

M18-48 summary

Main achievements:

- #97072-97074: M18-11 references for C40 with TIM-equivalent GIMs (3.7T/2.5MA, NBI = 4MW, no ³He puff)
- L-mode plasmas with core fast-ion (³He) electron heating
 - → good-quality gamma-ray measurements
 - \rightarrow post-sawtooth T_{e0} recovery rate as an indicator for fast-ion electron heating (e.g., #97089); promising way to demonstrate alpha particle heating [H. Weisen]
 - → KT5A measurements for ³He (~0.1%) [E. Delabie et al.]
 - → KG8C in DBS mode: to be analyzed
- #97084: first demonstration of the ITER-relevant off-axis 3-ion ICRF scheme to access ELMy H-mode in H majority plasmas at JET
- Good experimental results obtained despite difficult conditions ...:
 special thanks to our control-room team and those colleagues who contributed remotely
- Very good RF power: up to 6-7MW at 33MHz
- #97082: 32MW of D-NBI power + 6.5MW of ICRF, but unexpectedly very high H/(H+D) ≈ 0.94 (!)
 - → not good for the 3-ion ICRF scheme

M18-48 difficulties and unconducted studies

- Changed ³He fueling strategy on the fly:
 ³He RTC (offset level unknown) → ³He feedforward fueling
- Don't use the KT5B ppf for $n(^3\text{He})/n_e$ for this session [E. Delabie]: the helium density on KT5B tends to get swamped in background lines (neon and molecular)
- Very low 3 He concentrations, $n({}^{3}$ He)/ $n_{\rm e}$ < 0.1% [KT5A analysis, E. Delabie & E. Solano many thanks!]:
 - \rightarrow Didn't take risk to increase ³He puff rate w/o $n(^3\text{He})/n_e$ measurements in the control room (minimizing the risks for the follow-up sessions)
 - → ³He concentrations in most of M18-48 pulses likely below optimal values for plasma heating (~0.2-0.3% as in B15-12 and H16-12)
 - → Studies at higher ³He concentrations (0.2-1.5%) not conducted
- +pi/2 vs. -pi/2 ICRF antenna phasing comparison not conducted
- Limiter hotspot problems (next time should use GIM6 with H rather than Ne and an increased ROG)
- H-mode studies: problems with getting a proper isotopic ratio, H/(H+D) and $n(^3\text{He})/n_e \approx 0.2\text{-}0.3\%$: H/(H+D) ≈ 0.94 in #97082 (with 32MW of D-NBI); H/(H+D) < 0.7 in #97091
- #97084, ITER-relevant off-axis ³He heating: wrong settings for KK3 (B₀-change was not communicated to DC)

Bid for contingency in C38B extension: 1-1.5 sessions

• ITER-relevant off-axis heating (2.4T): optimization of $n(^3\text{He})/n_e$ and ^3He feedforward fueling calibration (^3He KT5A vs. puff rate; important for the prep. of M18-11 and M18-13 studies in C39; $n(^3\text{He})/n_e$ measurements will likely not be available in H/ ^4He plasmas in C39)

3-4 good pulses

• Repeat on-axis 3 He heating (3.2T) at higher $n({}^{3}$ He)/ $n_{\rm e}$ = 0.2-0.3%, 0.5% and 1% (more optimal for plasma heating and AE physics)

3-4 good pulses

If Alfvén cascades (reversed shear AEs) observed,
 +pi/2 vs. -pi/2 phasing comparison

2 good pulses

• Repeat H-mode studies with a better control of H/(H+D) and $n(^3\text{He})/n_e$

3 good pulses