A solver for energetic particle transport in constants of motion space with collision and phase space zonal structures in tokamak plasmas

Guo Meng¹, Ph. Lauber¹, Z. Lu¹, A. Bergmann¹, M. Schneider², ATEP team
Acknowledge: B. Hao, A. Chankin, F. Zonca, ATEP ENR project
${ }^{1}$ Max-Planck-Institut für Plasmaphysik, 85748 Garching, Germany; ${ }^{2}$ ITER Organization, Route de Vinon-sur-Verdon, CS90046, 13067 St Paul-lez-Durance, France

Abstract

Recently, a general theoretical framework for the transport of Phase Space Zona Structures (PSZS) has been developed [1,2]. PSZS are the long-lived toroidal symmetric $(n=0)$ structures that define the nonlinear equilibrium in the presence of fluctuations such as Alfvenic instabilities. In order to include sources and sinks and collisional slowing down processes, a new solver, ATEP-3D was implemented to describe the evolution of the EP distribution in the 3D Constants of Motion (CoM) space. It is fully embedded in ITER IMAS framework and combined with the LIGKA/HAGIS codes $[3,4]$. The new development is motivated by the need to use the CoM representation in the PSZS transport model. The Fokker-Planck collision operator epresented in the 3D CoM space is derived and implemented in the HAGIS code giving orbit-averaged collisional coefficients. For solving the PSZS equation including collisions, a finite volume method and the implicit scheme are adopted in the ATEP-3D code for optimized numerical properties. Open boundary conditions that allow the flux o pass through the boundaries without affecting the interior solution are implemented ATEP-3D allows the analysis of the particle and power balance with sources and sinks in the presence of EP transport induced by Alfvenic fluctuations to evaluate the EP confinement properties.

Advanced Transport modelling (ATEP): for multi-scale modelling of EP transport

```
*)
Spatial scales: EP orbit width ~0.1a related to EP energy (meso-scale between device size & }
Temporal scales: AE excitation, nonlinear wave-particle, wave-wave interactions, EP transport
Present 1D local radial transport models are more suitable for thermal ions/electrons
Constants of Motion: proper description of EP distribution; EP transport model in CoM space is needed TPSZS theory
Collisional transport (Neoclassical)
    Collision: slowing down and diffusion process; Global, Slow (long time scale transport)
    Wave-induced transport (Collisionless)
    EP-AE: characteristic velocities of EPs ~ phase velocities of AE % Llaber 2023EFTC talk; Zonca NJP2015;
    [Lauber 2023EFTC talk; Zonca NJP2015;
PSZS (Phase space zonal structure): long-ilved toro
General framework established for GK theory of transport, PSZS dynamics due to fluctuations
ITER IMAS (Integrated Modelling & Analysis System), IDSs as flexible coupling framework
```

Partial Differential Equation Solved in the ATEP-3D

PDE solved by ATEP-3D: $\quad \frac{\partial f}{\partial t}=C(f)+S+$ fluctuation induced transport

- EP distribution function: $f(X, t)$

Source/Sink: $S(X, t)$
Collision (C): Collisional coefficients are numerically calculated by HAGIS
The guiding center particle code HAGIS is implemented with a Monte Carlo model of pitch-angle scattering which includes conservation of
Constructing the collision operator for use in the PSZS theory
$C(f)=\frac{\partial}{\partial P_{\zeta}}\left(D_{P} f\right)+\frac{\partial}{\partial E}\left(D_{E} f\right)+\frac{\partial}{\partial \Lambda}\left(D_{\Lambda} f\right)+\frac{\partial^{2}}{\partial P_{\zeta}^{2}}\left(D_{P P} f\right)+\frac{\partial^{2}}{\partial E^{2}}\left(D_{E E} f\right)+\frac{\partial^{2}}{\partial \Lambda^{2}}\left(D_{\Lambda \Lambda} f\right)$

Bounce average: finite orbit width effect is included (EP-i/e collisions Banana regime)
Averaged over unperturbed orbit $\langle\boldsymbol{D}\rangle=\frac{1}{\tau} \int \boldsymbol{D} d t$, where $\boldsymbol{\tau}_{\boldsymbol{b}}$ is the
$D_{\Lambda}=-2 \Lambda \frac{v_{\|} \nu_{1}}{v_{s i n}}+\frac{1}{v^{2}}\left(\frac{B_{0}}{B}-\Lambda\right)_{\nu_{s}}$ time of a particle completing its poloidal orbit

Off-diagonal terms not shown in Eq are omitted
Collision coefficients in CoM space
都 $D_{P_{z}}$ in the CoM space
porticless: $\boldsymbol{v}_{s 1}$ is small
particles: $v_{s \|}$ is small
related to particle orbit types.
Data size $\left(N_{P_{\xi},} N_{E}, N_{\Lambda}\right)=(128 \times 40 \times 20)$,stored in IDS. Raw data in in
in the ATEP code to get the smooth function in the uniform grids in the CoM space.

Collision in the CoM space (ITER IMAS 100015/1)
-The simulation regime of energy is 100 KeV to 1 MeV . The energy is normalized to 1 MeV . The time unit is SI second. The normalization is chosen so that the normalized P_{ζ} and Λ are from 0 to 1 . The collision coefficients are normalized accordingly. Background density and temperature are assumed to be uniform.

[1] F. Zonca et al, New Journal of Physics 17013052 (2015); Proc. 29th IAEA FEC, London UK (2023) [2] M V Falessi et al, Phys. Plasmas 26022305 (2019); Proc. 29th IAEA FEC, London UK (2023) [3] S.D. Pinches, Comp. Phys. Comm., 111 (1998)

Implementation of the ATEP-3D

Discretization of the transport Eq. of E

Finite Volume Method (FVM): good conservation property - Fully implicit scheme (Crank-Nicholson): long time behavio 1D, 2D, 3D solver are developed using MATLAB; Fortran version planed. 1D and 2D are used for fast testing, the conservation property, steady state studies
ATEP-3D: object oriented programming; atep3d: core solver; dist exp 3d_cls: experimental data interface
Discretization of the Eq. Using Uniform Grids and a fixed time step size

The advection terms (e.g., slowing down of energy due to collision) induce the shift of the distribution function f while the shape is preserved. Negative flow: $\boldsymbol{D}^{\alpha}>\mathbf{0}$ (drag)
The EPs are slowed down by the background and get lost at the boundaries. An open boundary condition is implemented that allows the flux to pass through the boundary without distorting the distribution function and without affecting the interior
solution. We propose open B.C: $\frac{\partial^{2} f}{\partial x^{2}}=0$
D conservation studies with different boundary conditions

- Test case: $\begin{array}{lll}\frac{\partial f}{\partial t}=D_{x} \frac{\partial f}{\partial x} & \begin{array}{l}D_{x}=1, \\ f_{0}=\exp \left(-x^{2} / 0.025\right)\end{array} & \begin{aligned} \text { Analytical solution } \\ f=\exp -\left(x+D_{x} t\right)^{2} / 0.025\end{aligned}\end{array}$

Steady state solution obtained with collision \& source

EP transport due to wave induced PSZS

PSZS induced by AEs
 time-independent kick
the particle is assumed

 D_{E} is $s 10$ to times of that
to collision - Larger at $\Lambda=0$ and 1 The oszzs of of have
resonanstructures and az
very localized

Summary and outlook

Summary
ATEP-3D has been constructed fully embedded in the IMAS framework.
Code is setup in CoM space to describe accurately the evolution of PSZSs.
EP collision in CoM space is studied, instead of local pitch angle formulation
Long time behavior of EP transport can be studied
Steady state solution of EP slow-down using experimental data is simulated.
Mapping between marker space and ATEP CoM grids is produced \rightarrow density, current, pressure profiles

Outlook
Nonlinear PSZS measured by other gyrokinetic codes such as ORB5, TRIMEG
Energy balance, EP distribution \rightarrow AE, zonal field evolution. Based on Zonca \& Falessi model
More physics ingredients (anomalous transport due to turbulence) can be included in the ATEP-3D. The transport coefficients in the CoM can be evaluated from simulations or theoretical models.
Add experimental source function in the CoM (RABBIT, IMAS).

