

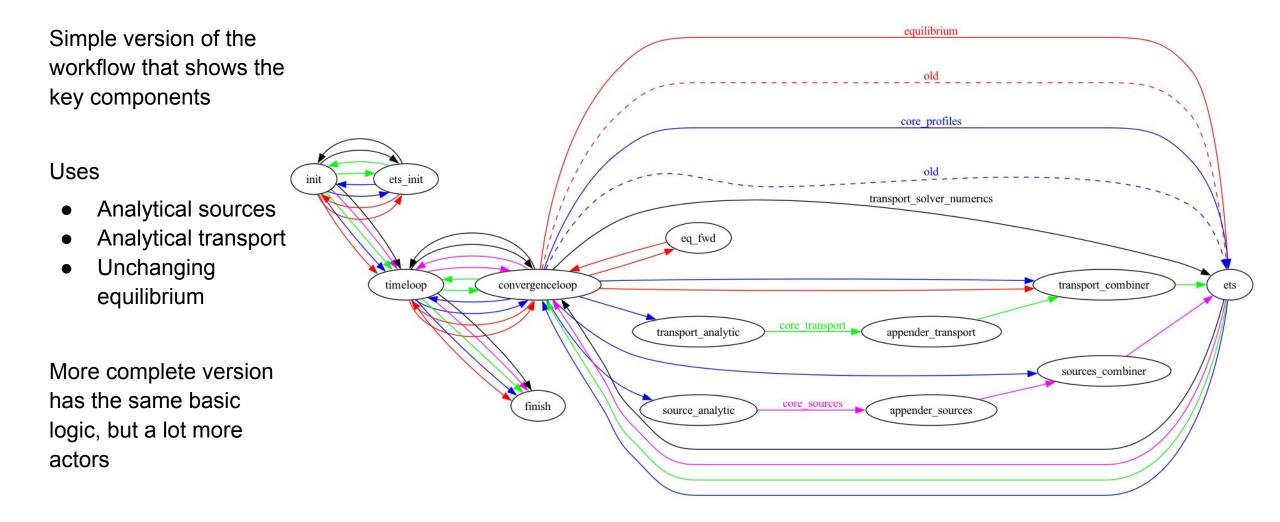
0 0

0 0

0 0

0 0

0 0 0 0


0 0

Building a new European Transport Simulator (ETS) using Persistent Actor Framework (PAF) based on MUSCLE3

- Background:
 - New paradigm based on independent communicating programs
 - Each program can be serial, multi-threaded, MPI or hybrid
 - Fortran, C++ codes can be prepared as a subroutine receiving IDS inputs and returning IDS outputs that is "iWrap"ped
 - Each code (or actor) is linked to the muscle3 library
 - A YAML file then describes the data flow between the actors
 - Logic of the workflow resides in the YAML file supported by specialised actors

Simple version of the workflow

Most recent work

- UQ applied to ETS-PAF workflows
- Inclusion of the HCD workflow in an ETS-PAF workflow
 - Successful demonstration using ECRH
 - Successful comparison between Gray and Torbeam
- Inclusion of W in the simulation
 - Sources from ionization and recombination included to determine the charge state balance of each W charge state
 - Busy looking at the conservation of the summed over charge state W density

Actors in ETS6 (Kepler version, IMAS)

- **Equilibrium**: chease, helena, gkmhd, eqinput, database_equilibrium, database_plasma_boundary
- <u>**Transport:</u>** spitzer_resistivity, edwm, tglf, qlk, weiland, glf, bgb, mmm, nclass, neo, database_transport, analytical, neutral_transport, transport_combiner</u>
- <u>**Transport:</u>** spitzer_resistivity, edwm, tglf, qlk, weiland, glf, bgb, mmm, nclass, neo, database_transport, analytical, neutral_transport, transport_combiner</u>
- Edge: penn, cec, solpsz1
- **Solver:** transport_solver
- <u>Service</u>: ets_init, update_core_profiles, changeocc, empty_transport, empty_core_sources, empy_waves, empty_distribution_sources, empty_distributions, combine_core_profiles, database_profiles, update_numerics, check_convergence, fill summary

- Object oriented ETS fully developed in Python and using iWrap actors.
 - All actors using *iWrap* e.g. CHEASE, TCI suite, GRAY,...
 - Built to be agile and fast.
 - *Parameter* and *Plasma* bundle concepts inherited from ETS-Kepler \rightarrow easy global data propagator between all actors.
 - All workflow components derive from same abstract class → trivial to integrate a new actor in the workflow
 - **Each of the TCI transport modules took <5min to fully integrate in the workflow (ready to use).**
 - HCD integration also trivial (granularity/modularity/clarity makes integration easy)
- Development/benchmarking in parallel to ETS-PAF using progressively more physics.
 - Analytic, NCLASS, Bohm-GyroBohm, TGLF, GRAY.
- Work is ongoing to consolidate/expand physics code and sub-workflows (HCD, MHD, fuelling) portfolio and collaboration with TSVV11/ITER already discussed.

Some key needs

- A better model for encapsulation
 - The so far implemented "encapsulation" is ad hoc and implemented by the workflow designer
 - Will need something better when we incorporate the ETS workflow into the UQ workflow
- A faster serialization/deserialization method released (not just demonstrated)
 - 95.6% of the cpu time of the most expensive module (which accounted for 35.8% of the total time) was spent in serialization/deserialization
- A way for mapping requirements of the simulation (which actors, which options, ...) onto the YMMSL files and the command line for running muscle3

Collaborations in place

- Collaboration between the various ETS developers
- Within TSVV11 (benchmarking, new physics)
- With ITER