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Scenario1

Hydrogen plasma (T(0) = 4.4 keV, n(0) = 9.478× 1017 m−3)
B = 1T
R0 = 10m
a = 1m
q̄ = 1.1 + 0.8 r

a
2

ρ∗(s = 0.5) = 1/180
me/mi = 1/200
κn,i = 0.3 (a/Lx)
κT ,i = 2.0
κT ,e = 2.0
sref = 0.5
∆s = 0.2
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EPs (when present):
Tf/Te = 10
< nf > / < ne >= scan (1%, 2%, 5%,
10%)
κn,f = 0.3
κT ,f = [0.0, 2.0]
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Scenario1

Hydrogen plasma (T(0) = 4.4 keV, n(0) = 9.478× 1017 m−3)
B = 1T
R0 = 10m
a = 1m
q̄ = 1.1 + 0.8 r

a
2

ρ∗(s = 0.5) = 1/180
me/mi = 1/200
κn,i = 0.3 (a/Lx)
κT ,i = 2.0
κT ,e = 2.0
sref = 0.5
∆s = 0.2

EPs (when present):
Tf/Te = 10
< nf > / < ne >= scan (1%, 2%, 5%,
10%)
κn,f = 0.3
κT ,f = [0.0, 2.0]

Play with thermal beta, and EP beta to
understand physics
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Background (Alexey)
• Alexey studied this case in

paper last year, “ITG-KBM”
transition with increasing β

• Here showing integral over all
modes during linear phase of
NL simulations

• My goal is to study the linear
phase in detail
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β scan
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Rational Surfaces

βe,ORB5 = 0.00052
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Rational Surfaces

βe,ORB5 = 0.00104
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Rational Surfaces

βe,ORB5 = 0.00156
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Rational Surfaces

βe,ORB5 = 0.00208
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Rational Surfaces

βe,ORB5 = 0.00260
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EP scan (κT ,f = 2.)
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EP scan (κT ,f = 2.)
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Conclusions (part 1)

• Starting from simple largest aspect ratio tokamak
• Adding β reduces most unstable “high-n” modes
• Adding β destabilizes lower-n modes
• high-β modes move to rational surfaces
• Role of EP-β seems to differ from bulk-β

• Goal is a model for effect of EP at constant total-β
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Phase Space Zonal Structures

• Tokamaks have equilibrium constants of motion (CoMs)
µ̇ = 0, Ė0 = 0, Ṗϕ0 = 0

• CoMs define orbits
• “Background” distribution function which is constant in time should depend only

on these2

examples include canonical Maxwellian (n(Pϕ), T(Pϕ)), but not local Maxwellian
(n(ψ), T(ψ))

• Any “transport” of (EPs) can be thought of as a change in the distribution function
in CoMs

• These “PSZS”, retain only the slow part of the distribution function – the
“nonlinear equilibrium” [Falessi, Zonca, et al]

2For passing particles, we also have the sign of v‖, but I ignore that for now
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PSZS implementation in ORB54

• We want an orbit-integrated version of our distribution function
• Unlike Eulerian codes, we do not have F(5D) in PIC codes
• Akin to obtaining 3D (real-space) charge density, deposit weights onto spline

basis via projection
B-Splines in non-periodic (µ, E, Pϕ) space

• To obtain PSZS, then just need to solve a mass-matrix problem
• Just store coefficients – typically solved offline for memory and efficiency reasons3

• Some non-CoM coordinates alternative options for the diagnostic
(Pϕ → s =

√
ψN; µ→ v‖; ...)

• Also choice in COMs in principle (µ→ Λ = µB0

E ) – requires Jacobian for each
choice.

3We use huge banded matrices and a direct LAPACK solver, as is typically done in ORB5 for much
smaller matrices. A true sparse solver would be undoubtedly more efficient

4Bottino et al., JPCS 2022
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PSZS example

PSZS from pair of TAE modes (n = 18, 19) in ITER
Comparison to ATEP (LIGKA + HAGIS) on-going – qualitatively excellent
µ→ Λ done in postprocessing
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