

 0.001

\sim **ORB5** β **and EP stabilization (and PSZS)** $0¹$

ò. Thomas Hayward-Schneider Max Planck Institute for Plasma Physics, Garching \sim

.

 \circ \sim

- \sim
	- Joint TSVV10-TSVV11 meeting

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Outline

β [and EP stabilization](#page-2-0)

[Case setup](#page-2-0) [Growth rates](#page-2-0) [Shift to rational surfaces](#page-2-0) [Ongoing effort to separate](#page-2-0) β and EP effects

[Phase Space Zonal Structures in ORB5](#page-2-0) [PSZS background](#page-2-0) [Implementation in ORB5](#page-2-0) [PSZS Example](#page-2-0)

Scenario¹

Hydrogen plasma ($\mathcal{T}(0) = 4.4\,\mathrm{keV}$, $\mathcal{n}(0) = 9.478\times 10^{17}\,\mathrm{m}^{-3})$ $B = 1$ T $R_0 = 10 \,\mathrm{m}$ $a = 1$ m $\bar{q} = 1.1 + 0.8\frac{r}{e}$ *a* 2 $\rho_*(s=0.5)=1/180$ $m_e/m_i = 1/200$ $\kappa_{n,i} = 0.3$ (a/Lx) $\kappa_{\mathcal{I}i} = 2.0$ $\kappa_{\tau,e} = 2.0$ $s_{\text{ref}} = 0.5$ Δ ^s = 0.2

 1 PPCF 64 (2022) 104009 A Mishchenko et al.

Scenario¹

Hydrogen plasma ($\mathcal{T}(0) = 4.4\,\mathrm{keV}$, $\mathcal{n}(0) = 9.478\times 10^{17}\,\mathrm{m}^{-3})$ $B = 1$ T $R_0 = 10 \,\mathrm{m}$ $a = 1$ m $\bar{q} = 1.1 + 0.8\frac{r}{e}$ *a* 2 $\rho_*(\mathbf{s}=0.5)=1/180$ $m_e/m_i = 1/200$ $\kappa_{n,i} = 0.3$ (a/Lx) $\kappa_{\mathcal{I}i} = 2.0$ $\kappa_{\tau,e} = 2.0$ $s_{\text{ref}} = 0.5$ Δ ^s = 0.2 EPs (when present): $T_{\rm f}/T_{\rm e} = 10$ $\langle n_f \rangle / \langle n_e \rangle = \text{scan}$ (1%, 2%, 5%, 10%) $\kappa_{n,f} = 0.3$ $\kappa_{\mathcal{T},f} = [0.0, 2.0]$

¹PPCF 64 (2022) 104009 A Mishchenko et al.

Scenario¹

Hydrogen plasma ($\mathcal{T}(0) = 4.4\,\mathrm{keV}$, $\mathcal{n}(0) = 9.478\times 10^{17}\,\mathrm{m}^{-3})$ $B = 1$ T $R_0 = 10 \,\mathrm{m}$ $a = 1$ m $\bar{q} = 1.1 + 0.8\frac{r}{e}$ *a* 2 $\rho_*(\mathbf{s}=0.5)=1/180$ $m_e/m_i = 1/200$ $\kappa_{n,i} = 0.3$ (a/Lx) $\kappa_{\tau,i} = 2.0$ $\kappa_{\tau,e} = 2.0$ $s_{\text{ref}} = 0.5$ Δ ^s = 0.2 EPs (when present): $T_{\rm f}/T_{\rm e} = 10$ $\langle n_f \rangle / \langle n_e \rangle = \text{scan}$ (1%, 2%, 5%, 10%) $\kappa_{n,f} = 0.3$ $\kappa_{\mathcal{T},f} = [0.0, 2.0]$

Play with thermal beta, and EP beta to understand physics

¹PPCF 64 (2022) 104009 A Mishchenko et al.

Background (Alexey)

- Alexey studied this case in paper last year, "ITG-KBM" transition with increasing β
- Here showing integral over all modes during linear phase of NL simulations
- My goal is to study the linear phase in detail

β **scan**

 $\beta_{e, \text{ORB5}} = 0.00104$

 $\beta_{e, \text{ORB5}} = 0.00156$

 $\beta_{e, \text{ORB5}} = 0.00208$

$\beta_{e, \text{ORB5}} = 0.00260$

T SV V 10 & 11 JOINT MEETING I THOMAS HAYWARD-SCHNEIDER I 2023-11-20 **CHE R 1 20 23 - 11 - 20** CHB 5 β STAB. 6

EP scan ($\kappa_{T,f} = 2$.)

Conclusions (part 1)

- Starting from simple largest aspect ratio tokamak
- Adding β reduces most unstable "high-n" modes
- Adding β destabilizes lower-n modes
- high- β modes move to rational surfaces
- Role of EP- β seems to differ from bulk- β
	- Goal is a model for effect of EP at constant total- β

Phase Space Zonal Structures

- Tokamaks have equilibrium constants of motion (CoMs) $\dot{\mu}=0, \dot{E}_0=0, \dot{P}_{\varphi_0}=0$
- CoMs define orbits
- "Background" distribution function which is constant in time should depend only on these² examples include canonical Maxwellian $(n(P_{\varphi}), T(P_{\varphi}))$, but not local Maxwellian $(n(\psi), T(\psi))$
- Any "transport" of (EPs) can be thought of as a change in the distribution function in CoMs
- These "PSZS", retain only the slow part of the distribution function the "nonlinear equilibrium" [Falessi, Zonca, et al]

²For passing particles, we also have the sign of v_{\parallel} , but I ignore that for now $\tt{DINT MEETING I THOMAS HAYWARD-SCHNEIDER I 2023-11-20}$ \tt{ORBS} β \tt{STAB} .

PSZS implementation in ORB5⁴

- We want an orbit-integrated version of our distribution function
- Unlike Eulerian codes, we do not have F(5D) in PIC codes
- Akin to obtaining 3D (real-space) charge density, deposit weights onto spline basis via projection B-Splines in non-periodic (μ, E, P_{φ}) space
	- To obtain PSZS, then just need to solve a mass-matrix problem
	- Just store coefficients typically solved offline for memory and efficiency reasons³
- Some non-CoM coordinates alternative options for the diagnostic
√C $(\mathsf{P}_\varphi \to \mathsf{s} = \sqrt{\psi_{\mathsf{N}}};\, \mu \to \mathsf{v}_\parallel;\, ...)$
- Also choice in COMs in principle $(\mu \to \Lambda = \frac{\mu B_0}{E})$ requires Jacobian for each choice.

³We use huge banded matrices and a direct LAPACK solver, as is typically done in ORB5 for much smaller matrices. A true sparse solver would be undoubtedly more efficient ⁴Bottino et al., JPCS 2022

 \tt JOINT MEETING I THOMAS HAYWARD-SCHNEIDER I 2023-11-20 \tt and the state of the state

PSZS from pair of TAE modes $(n = 18, 19)$ in ITER Comparison to ATEP (LIGKA + HAGIS) on-going – qualitatively excellent $\mu \rightarrow \Lambda$ done in postprocessing