Alpha particle studies at JET with GENE-Tango

- JET 50-50 D-T hybrid scenario #99912 achieved record sustained $P_{fus} > 10MW$ for $\sim 3 \alpha$ -particle slowing down time.
- $I_p = 2.3$ MA, $B_0 = 3.45$ T, $q_{95} \sim 4.8$, $\beta_{pol} = 1.4$, gas injection only, lower density, $T_i > T_e$.

Experimantal scenario

- GENE (global)-Tango simulations are performed with realistic electron-ion mass ratio, collisions and finite β .
- Magnetic equilibrium reconstructed via pressure contrained EFIT.
- Equivalent Maxwellian used for each plasma species.
- <u>Fishbones</u> present in this discharge.

• Negligible alpha particle density for the nominal profiles.

Experimantal scenario

• Heat, particle sources and initial guess for plasma profiles computed by TRANSP interpretative runs.

- Negligible alpha particle heating on thermal ions; considerable contribution to electrons.
- Cases analyzed: (i) without alpha particles in GENE, (ii) with alpha particles in GENE, (iii) without alpha particles in GENE and alpha heating in Tango.

GENE-Tango simulations: w/o alpha particles in GENE

- GENE-Tango simulations performed until reaching steady-state → turbulent fluxes match volume integral of injected sources at each location.
- Alpha particles are neglected from GENE, but alpha heating contribution is retained in Tango.

• Excellent agreement between GENE-Tango and experimental measurements!

GENE-Tango simulations: w alpha particles in GENE

- GENE-Tango simulations performed until reaching steady-state \rightarrow turbulent fluxes match volume integral of injected sources at each location.
- Alpha particles are included in GENE and alpha heating is retained in Tango.

• GENE-Tango recovers the same plasma profiles obtained without alpha particles \rightarrow alpha particle density is too low to make a significant contribution.

GENE-Tango simulations: w/o alpha particles and alpha heating

- GENE-Tango simulations performed until reaching steady-state \rightarrow turbulent fluxes match volume integral of injected sources at each location.
- Both alpha particles and alpha heating neglected in the modelling.

• Alpha heating has a negligible effect on ion temperature and plasma density, but a visible effect on electron temperature $\rightarrow T_e$ relaxes on axis by ~ 1 keV.

Scans over alpha particle density with GENE - preliminary

- Alpha particle density is artificially increased respect to the nominal density to increase alpha particle effects on core turbulence.
- We consider four cases spanning from $n_{\alpha}/n_e \sim 0.15\%$ to $n_{\alpha}/n_e \sim 1.5\%$ (ITER like density).

• Thermal profiles are not self-consistent and cannot sustain $n_{\alpha}/n_{e} > 0.15 \%$.

Scans over alpha particle density with GENE - preliminary

- No visible alpha particle effect on turbulece for $n_{\alpha}/n_e < 0.5 \%$.
- Alpha particles lead to strong heat losses when their density is increased above $n_{\alpha}/n_e > 0.5 \%$.

- Convergence studies are on-going!
- Analyses on linear stability for alpha-driven AE modes is on-going.

ITER: profiles - on-going

- GENE-Tango simulations at ITER for baseline Q = 10, $I_p = 15MA$ are currently ongoing.
- Plasma profiles initialized to the ones computed by QualiKiz-JETTO.
- Simulated cases: (i) without alpha particles in GENE, (ii) with alpha particles in GENE.

• Turbulent fluxes are still far from the steady-state solution \rightarrow more iterations required.

Global tearing modes

Global tearing modes

Global tearing modes

