Diagnostic output for the ETS solver

Dmitriy Yadykin

Purpose and main features

- Purpose
 - to check input to the solver for particular equation (psi, n,T)
 - to compare/benchmark different ETS version (5 vs 6) or reference vs actual version (some kind of regression test)
- Main features:
 - number of profiles are written to the file (placed in \$KEPLER folder)
 - one instance of the profiles is stored (iteration or time step); the profiles from last time step/iteration are saved
 - dedicated python script is used for post-processing (plotting)

Implementation

- Equations in ETS are defined in 'generalized form' using the 'same' coefficients (a,b,...g).
- Coefficients are composed from the input profiles (equilibrium, transport, sources)
- These two types of profiles are gathered and put to the data file for each equation
- First ion species is used for ion equations
- the diagnostic output is implemented for now (20-04-15) for psi, Te, Ti, ne
- diagnostic output is activated by the code parameter of the TRANSPORT_SOLVER actor

Example:psi equation, source code

> Formulation of the differential equation for \f\$Y(t)\f\$ > for a given\f\$Y(t-dt)\f\$ in terms of the coefficients > \f\$\{A, B, C, D, E, F, G\}\f\$ in the SOLVER object.	
> \f[> [A*Y-B*Y(t-dt)]/H + 1/C * [-D*Y(t)' + E*Y(t)]' = F - G*Y > \f]	
NUMERICAL_COEFFICIENTS_PSI:D0IRH0=1,NRH0SOLVER%Y(1,IRH0)=PROFILES%PSI(IRH0)SOLVER%DY(1,IRH0)=PROFILES%DPSI(IRH0)SOLVER%YM(1,IRH0)=PROFILES%PSIM(IRH0)SOLVER%DYM(1,IRH0)=PROFILES%DPSIM(IRH0)	
SOLVER%A(1,IRH0) = TRANSPORT%SIGMA(IRH0) SOLVER%B(1,IRH0) = TRANSPORT%SIGMA(IRH0) SOLVER%C(1,IRH0) = TRANSPORT%SIGMA(IRH0) SOLVER%C(1,IRH0) = IMAS_CONSTANTS%MU0*GEOMETRY%BGE0*GEOMETRY%RH0(IRH0)*GEOMETRY%RH0_BND/GEOMETRY%FDIA(IRH0)**2 SOLVER%D(1,IRH0) = GEOMETRY%VPR(IRH0)/4.e0_IDS_REAL/IMAS_CONSTANTS%PI**2*GEOMETRY%G3(IRH0)/GEOMETRY%FDIA(IRH0)/GEOMETRY%RH0_BN SOLVER%E(1,IRH0) = -IMAS_CONSTANTS%MU0*GEOMETRY%BGE0*(GEOMETRY%RH0(IRH0)/GEOMETRY%FDIA(IRH0))**2*TRANSPORT%SIGMA(IRH0) SOLVER%E(1,IRH0) = -IMAS_CONSTANTS%MU0*GEOMETRY%BGE0*(GEOMETRY%RH0(IRH0)/GEOMETRY%FDIA(IRH0))**2*TRANSPORT%SIGMA(IRH0) % GEOMETRY%PHI_BND_PRIME/GEOMETRY%PHI_BND/2.e0_IDS_REAL *)
<pre>IF (GEOMETRY%RH0(IRH0).NE.0.e0_IDS_REAL) THEN SOLVER%F(1,IRH0) = - GEOMETRY%VPR(IRH0)/2.e0_IDS_REAL/IMAS_CONSTANTS%PI/GEOMETRY%RH0(IRH0)*SOURCES%CURR_EXP(IRH0) SOLVER%G(1,IRH0) = GEOMETRY%VPR(IRH0)/2.e0_IDS_REAL/IMAS_CONSTANTS%PI/GEOMETRY%RH0(IRH0)*SOURCES%CURR_IMP(IRH0) + TRANSPORT%SIGMA(IRH0) * (2.0_IDS_REAL + FUN1(IRH0)) * GEOMETRY%PHI_BND_PRIME/GEOMETRY%PHI_BND/2.e0_IDS_REAL ELSE</pre>	
SOLVER%F(1,IRHO) = 0.0_IDS_REAL SOLVER%G(1,IRHO) = TRANSPORT%SIGMA(IRHO) * GEOMETRY%PHI_BND_PRIME/GEOMETRY%PHI_BND	

ENDIF

END DO NUMERICAL COEFETCIENTS DST

IF (dump_out_flag.EQ.1) THEN

FILENAME_DIAGOUT='diagout_sover_psi_ets6'

CALL DIAGNOSTIC_SOLVER (FILENAME_DIAGOUT,NRH0,GEOMETRY%RH0,SOLVER%Y(1,:),SOLVER%YM(1,:), SOLVER%DY(1,:),SOLVER%A(1,:),SOLVER%B(1,:),SOLVER%C(1,:),SOLVER%D(1,:),SOLVER%E(1,:), SOLVER%F(1,:),SOLVER%G(1,:),SOLVER%H)

PRIME_TERM=GEOMETRY%BGEO*GEOMETRY%PHI_BND_PRIME/GEOMETRY%PHI_BND/2.e0_IDS_REAL

FILENAME_diagout='diagout_profiles_psi_ets6'

CALL DIAGNOSTIC PROFILES PSI(FILENAME_DIAGOUT,NRH0,GEOMETRY%RH0,TRANSPORT%SIGMA,GEOMETRY%FDIA,& GEOMETRY%VPR,GEOMETRY%G3,SOURCES%CURR_EXP,SOURCES%CURR_IMP,PRIME_TERM)

Post-processing

Python script:

https://gforge6.eufus.eu/svn/keplerworkflows/trunk/imas/ETS/kplots/diagout.py

Available arguments:

[~/wfimas/kplots] python diagout.py -h usage: diagout.py [-h] [--folder [FOLDER [FOLDER ...]]] [--filenames [FILENAMES [FILENAMES ...]]] [--labels [LABELS [LABELS ...]]] [--mode [MODE [MODE ...]]] optional arguments: -h, --help show this help message and exit --folder [FOLDER [FOLDER ...]] OPTIONAL: folder name where diagnostic output files are stored, single place for now --filenames [FILENAMES [FILENAMES ...]] OPTIONAL: file name(s) of the diagnostic files to be plotted --labels [LABELS [LABELS ...]] OPTIONAL: names to label plotted cases --mode [MODE [MODE ...]] OPTIONAL:execution mode, can be solver_<equation_name> or profiles_<equation_name>, default is solver_psi

Default values:

- -folder \$KEPLER (local kepler should be loaded)
- filenames diagout_solver_psi_ets6
- labels Case_1
- mode solver_psi

Example: default

To prepare:

- load paramfile (starting from imas_kepler folder) param/jet/param_benchmark_ets5_psi_evolution_ip_nclass.txt
- activate dump_solver_data_to_file parameter
- run the workflow

To execute: ./diagout.py in the kplots folder

Example: mode=profiles_psi

To execute:

./diagout.py --mode profiles_psi

Example: compare ETS5/6 profiles_psi

Prepare:

- run correspondent ETS5 case (ask me how if you interested)
- copy diagout files for both versions to the one folder (~/public/data/diagout_ets in my case)
 Execute:

./diagout.py --folder ~/public/data/diagout_ets --filenames diagout_profiles_psi_ets5 diagout_profiles_psi_ets6 -labels ets5 ets6 --mode profiles_psi

