
This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via
the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions
expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the
European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Ihor Holod, IPP-Garching

JOREK: advancements in MHD Solver

S O LV E R D E V E L O P M E N T SM A X - P L A N C K - I N S T I TU T F Ü R P L A S M A P H Y S I K | I H O R H O L O D | 1 5 . 11 . 2 3 1

• Motivation

• Overview of JOREK code

• Preconditioner

• Re-implementation of iterative solver

• Newton’s method

• BiCGSTAB method

• Further plans

S O LV E R D E V E L O P M E N T SM A X - P L A N C K - I N S T I TU T F Ü R P L A S M A P H Y S I K | I H O R H O L O D | 1 5 . 11 . 2 3 2

Outline

• JOREK is an extended nonlinear MHD code used to study large scale plasma instabilities and their

control in realistic divertor geometry

• IPP is hosting one of the main hubs for the code development in the European and international

community

• JOREK is written in modern FORTRAN with MPI/OpenMP hybrid parallelization

• Several models are implemented in JOREK with different sets of physical quantities, including full -

MHD, and various implementations of reduced MHD models

• MHD equations in weak form are spatially discretized on continuous 2D isoparametric Bezier

finite element grid in poloidal plane, combined with a toroidal Fourier expansion

• Several hybrid kinetic-fluid models are also available, e.g. for ITG turbulence, neutrals, impurities,

energetic particles, relativistic runaway electrons

S O LV E R D E V E L O P M E N T SM A X - P L A N C K - I N S T I TU T F Ü R P L A S M A P H Y S I K | I H O R H O L O D | 1 5 . 11 . 2 3 3

JOREK: overview

Generalized form of MHD equation

Linearized implicit time discretization scheme yields

Linear system of algebraic equations

A is a sparse matrix, typically large and ill-conditioned

Example: 30K nodes; 8 physical variables; 4 dof per node; 21 toroidal

harmonics: matrix dimension 40 million with 500 billion non-zero elements –

requires 8 TB of memory for storage

S O LV E R D E V E L O P M E N T SM A X - P L A N C K - I N S T I TU T F Ü R P L A S M A P H Y S I K | I H O R H O L O D | 1 5 . 11 . 2 3 4

JOREK: MHD solver

𝜕𝐴(𝑢)

𝜕𝑡
= 𝐵(𝑢, 𝑡)

1 + 𝜉
𝜕𝐴

𝜕𝑢

𝑛

− ∆𝑡𝜃
𝜕𝐵

𝜕𝑢

𝑛

𝛿𝑢𝑛 = ∆𝑡𝐵𝑛 + 𝜉
𝜕𝐴

𝜕𝑢

𝑛−1

𝛿𝑢𝑛−1

𝐴𝑥 = 𝑏 Structure of the sparse matrix

for the X-point geometry

𝛿𝑢𝑛 = 𝑢𝑛+1 − 𝑢𝑛

Direct LU factorization is (usually) prohibitively expensive

• Iterative GMRES method with (left) preconditioning is used

• Preconditioned system to be solved:

• Product should have low condition number

• Solution should be easy to find

Preconditioner matrix doesn’t appear explicitly, only in form of a solution

Solver algorithm:

• Construct global stiffness matrix and RHS – every time step

• Construct/distribute preconditioner matrix – once per several steps

• Analyze/build elimination graph – once per simulation run

• Perform LU factorization – once per several steps

• Perform GMRES/BICGSTAB iterations – every step

− Find solution for preconditioner matrix – every iteration

S O LV E R D E V E L O P M E N T SM A X - P L A N C K - I N S T I TU T F Ü R P L A S M A P H Y S I K | I H O R H O L O D | 1 5 . 11 . 2 3 5

Solver algorithm

𝑀−1𝐴𝑥 = 𝑀−1𝑏

𝑀−1𝐴

𝑧 = 𝑀−1𝑤

• JOREK preconditioner is bases on decoupling individual toroidal Fourier modes of mode families

• Full preconditioner matrix is equivalent to the original matrix A with omitted mode coupling

• Each diagonal block has similar sparsity pattern as A

• Each diagonal block can be solved independently

S O LV E R D E V E L O P M E N T SM A X - P L A N C K - I N S T I TU T F Ü R P L A S M A P H Y S I K | I H O R H O L O D | 1 5 . 11 . 2 3 6

Physics-based preconditioner

• Individual preconditioner block-matrix can include arbitrary harmonics

(mode groups)

• Convergence may improve significantly with new preconditioner

• Increased memory consumption

S O LV E R D E V E L O P M E N T SM A X - P L A N C K - I N S T I TU T F Ü R P L A S M A P H Y S I K | I H O R H O L O D | 1 5 . 11 . 2 3 7

Generalized Preconditioner (mode groups)

Old New

• There are few places in the code where sparse linear system is solved: Grad-Shafranov

equilibrium, direct- and iterative MHD solvers

• Three choices for external libraries: MUMPS, PaStiX (v.5 and v.6) or STRUMPACK

• Problem with redundancies, complexity and non-locality

• The purpose of this development is creating universal solver interface subroutine which takes the

sparse matrix and the right hand side vector as input, and provide the solution vector as the result

• Inside such subroutine two options are implemented for the direct and iterative approaches.

• With the iterative approach there is additional solver call for the preconditioner, which is identical

to the direct one, except the input matrix is distributed over the different sets of MPI tasks

• New restructured solver allows simplified implementation of new features and improved

flexibility in managing computational resources.

S O LV E R D E V E L O P M E N T SM A X - P L A N C K - I N S T I TU T F Ü R P L A S M A P H Y S I K | I H O R H O L O D | 1 5 . 11 . 2 3 8

Re-implementation of solver subroutines

• New data types

• Passing structured data as procedure arguments for localization and control vs. global variables

• Centralized definition of data types allows easy adjustments and addition of new features

• Type-bound procedures are developed to handle move, copy and delete operations

• New unified solver interface

• The direct-solve procedure is hidden in the subroutines specific to different external solver

libraries, including standard steps, such as initialization, analysis, factorization and solve

• No duplication

S O LV E R D E V E L O P M E N T SM A X - P L A N C K - I N S T I TU T F Ü R P L A S M A P H Y S I K | I H O R H O L O D | 1 5 . 11 . 2 3 9

New data-types and interfaces

• Using STRUMPACK as direct solver allows fully distributed construction and analysis of

preconditioner block-matrices and memory purging from previous LU-factorization

• ELM simulation test case with 2 Fourier modes, using single-mode-family preconditioner.

• Global stiffness matrix has rank of 3.1M and 2.3B nonzero entries

• Number of nonzero entries in the preconditioner matrices are 258M for n=0 and 1B for n=1

modes, with the respective ranks of 1M and 2M

• Simulation performed on Marconi-Fusion HPC using 6 computational nodes and 12 OpenMP

threads (4 MPI tasks per node)

• The time performance of the iterative solver hasn't changed significantly in the restructured solver

S O LV E R D E V E L O P M E N T SM A X - P L A N C K - I N S T I TU T F Ü R P L A S M A P H Y S I K | I H O R H O L O D | 1 5 . 11 . 2 3 1 0

Improving performance with STRUMPACK library

PaStiX v.5.2.3 STRUMPACK v.7.0.1 MUMPS v.5.2.1

Step with A+F (s) 132 104 170

Step with F (s) 131 59 145

Step with 15 iterations (s) 14.6 11 13.3

S O LV E R D E V E L O P M E N T SM A X - P L A N C K - I N S T I TU T F Ü R P L A S M A P H Y S I K | I H O R H O L O D | 1 5 . 11 . 2 3 11

Improvement in memory usage

MUMPS

MUMPS

PaStiX

PaStiX

STRUMPACK

STRUMPACK

• Global stiffness matrix is distributed among MPI tasks of MPI_COMM_WORLD

• Preconditioner sparse matrices are distributed or cloned (PaStiX) among MPI tasks of MPI_COMM_N

• LU factorized matrices are distributed or cloned among MPI tasks of MPI_COMM_N

• Find solution iteratively, reducing the precision at intermediate steps

• Equation to solve

• Option use_newton in the input file wraps around the existing sparse solver

S O LV E R D E V E L O P M E N T SM A X - P L A N C K - I N S T I TU T F Ü R P L A S M A P H Y S I K | I H O R H O L O D | 1 5 . 11 . 2 3 1 2

Inexact Newton Solver

𝐺 𝑢𝑛+1 = 𝑏(𝑢𝑛 , 𝑢𝑛−1)

ቤ
𝜕𝐺

𝜕𝑢
𝑢𝑛
𝛿𝑢𝑛+1 = −𝐺 𝑢𝑛 + 𝑏 𝑢𝑛, 𝑢𝑛−1

ቤ
𝜕𝐺

𝜕𝑢
𝑢𝑘−1

𝛿𝑢𝑘 = −𝐺 𝑢𝑘−1 + 𝑏 𝑢𝑛, 𝑢𝑛−1

𝛿𝑢𝑛+1 = 𝑢𝑛+1 − 𝑢𝑛

𝐺 𝑢𝑘 = 𝐺 𝑢𝑛 + ቤ
𝜕𝐺

𝜕𝑢
𝑢𝑛
𝛿𝑢𝑘

𝑛

𝐽𝑘−1𝛿𝑢𝑘 = 𝑅𝑘−1

𝑅𝑘 = 𝑅𝑛 − 𝐽𝑛𝛿𝑢𝑘
𝑛 𝑅𝑛 = −𝐺 𝑢𝑛 + 𝑏 𝑢𝑛, 𝑢𝑛−1 𝐽𝑘 = ቤ

𝜕𝐺

𝜕𝑢
𝑢𝑘

• Maximum memory utilization occurs during the iterative part of the MHD solver

• Restarted GMRES method requires allocation of the whole Krylov subspace for the maximum

number of iterations before restart

• BiCGSTAB (Bi-Conjugate Gradient Stabilized) method can be used as an alternative to GMRES

with significantly lower memory requirements

S O LV E R D E V E L O P M E N T SM A X - P L A N C K - I N S T I TU T F Ü R P L A S M A P H Y S I K | I H O R H O L O D | 1 5 . 11 . 2 3 1 3

BiCGSTAB iterative method in JOREK

• BICGSTAB algorithm is similar to the GMRES algorithm in terms of the main operations:

• Construct preconditioner solution

• Perform matrix-vector multiplication

• BICGSTAB method is implemented in JOREK as a stand-alone module

solvers/mod_bicgstab.f90

• BICGSTAB uses the same control parameters as GMRES for maximum iterations and convergence

tolerance (iter_gmres, gmres_tol)

• BICGSTAB can be used as an alternative to GMRES by setting USE_BICGSTAB=1 in the Makefile.inc

• Cons:

• BICGSTAB method can fail to converge

• Convergence can be worse compared to GMRES

• For the same number of iterations BICGSTAB has slower performance: every iteration requires 2 calls

for the preconditioner solve and for the matrix-vector multiplication

• Pros:

• BICGSTAB requires less memory

• Convergence can be better compared to GMRES

S O LV E R D E V E L O P M E N T SM A X - P L A N C K - I N S T I TU T F Ü R P L A S M A P H Y S I K | I H O R H O L O D | 1 5 . 11 . 2 3 1 4

BiCGSTAB implementation

• Targeting GPU accelerated MHD solver

• GPU acceleration/optimization of stiffness matrix construction

• Possibility of using smaller preconditioner at the expense of increased computation cost

• Improving convergence of iterative solver

• Employ ML techniques to provide better initial guess

• Implement modern algebraic methods to reduce condition number

S O LV E R D E V E L O P M E N T SM A X - P L A N C K - I N S T I TU T F Ü R P L A S M A P H Y S I K | I H O R H O L O D | 1 5 . 11 . 2 3 1 5

Further developments

• HAWK production node type Zen2 aka “Rome”

• 2xAMD EPYC 7742 processors (64 cores @ 2.25GHz, AVX2)

• DRAM: 256GB @ 380GB/s

• Available compilers:

• AOCC is the AMD Optimized C/C++ Compiler based on LLVM

• Intel

• GNU

• MPI Libraries: MPT, OpenMPI

• JOREK and solver libraries are built and tested with different combinations of compiler+MPI

• Performance of AOCC+MPT and Intel+MPT are comparable when using STRUMPACK

• With PaSTiX the internal threading fails when AOCC+MPT is used

• GNU+OpenMPI yields sub-optimal performance

S O LV E R D E V E L O P M E N T SM A X - P L A N C K - I N S T I TU T F Ü R P L A S M A P H Y S I K | I H O R H O L O D | 1 5 . 11 . 2 3 1 6

Porting JOREK to HLRS HAWK

• The size of the test problem used to study strong scaling

behavior is relatively modest:

• System rank 1.4M; 2.6B nonzero entries

• LU-factorization of 5 sparse matrices of up to 845M non-zero

entries each. Corresponding factorized matrices contain up to

5.9B elements.

• The total memory requirement is ~350GB.

• Minimum number of nodes for this case is 4.

• The departure from the ideal scaling is due to the increased

communication time during matrix construction, as well as

relatively poor scaling performance of the sparse solver

libraries.

• Both issues could be addressed partially via fine-tuned

optimization. Much better scalability is expected for particle-

dominated simulations.

S O LV E R D E V E L O P M E N T SM A X - P L A N C K - I N S T I TU T F Ü R P L A S M A P H Y S I K | I H O R H O L O D | 1 5 . 11 . 2 3 1 7

JOREK performance on HAWK

