

Gaurav Saxena & David Vicente Dorca

KNOSOS and
SOLPS-ITER

BSC-ACH Meeting | 16th Nov. 2023

RGB Presentation Color Code

Bad / Alarm

Good / Improvement

Keyword / Code

KNOSOS
(Ricard Zarco Badia, Helena Vella Beltran, Laia Julio Plana,

David Vicente, Gaurav Saxena)

KNOSOS

• KiNetic Orbit-averaging Solver for Stellarators

• Related to Plasma in 3-D magnetic confinement

• Multiple particle species being solved on their own surface

• Written in Fortran90, MPI parallelized

• Open source, available at: https://github.com/joseluisvelasco/KNOSOS

• Problems: One surface-One MPI, a Notorious process taking much longer,

parallel efficiency, others.

https://github.com/joseluisvelasco/KNOSOS

Basics: Division by Zero

● Pass -fp_trap flag to PETSc (Portable Extension Toolkit for Scientific

Computing)

● srun ./knosos.x -fp_trap

● Run DDT: ddt ./knosos.x -fp_trap to locate exact error point

○ All 22 Processes stop in fill _3dgrid (configuration.f90:1617) with

signal SIGFPE (Arithmetic exception) .

NaN in [A][x] = [vecb] MPI Rank 15
● Linear system of equations Ax = b …

● Code equivalent [A][vecx] = [vecb]

● But vecb contains a NaN

● vecb has type Vec of PETSc
● Convert to simple array using VecGetArrayReadF90(vecb,xx_v,ierr)

where xx_v is PetscScalar, pointer :: xx_v(:)

Before replacing NaN at vecb(3) with random value

After replacing NaN at vecb(3) with random value

HotSpots

Used: Intel 2018.4, IMPI 2018.4

Attempt Optimization - 1(a), CALCB_DEL in coefficients.f90

22 Processes (Total time) Original (NaN) No NaN (expected
behaviour)

Optimized=Vectorized

CALCB_DEL 138.31 sec 126.51 sec 47.28 sec

Total App Time 1941.66 sec 685.77 551.22

Speed-up for CALCB_DEL = 126.51/47.28 = 2.67x

Total Speed-up = 685.77/551.22 = 1.24x

🚨 Time recorded for instance of

CALCB_DEL taking maximum time

Attempt Optimization - 2, DELTA_PHASE in coefficients.f90

This is another loop ! Needs vector
aligned separately !

Add at compile time
-align array64byte -qopt-zmm-usage=high

22 Processes No NaN Aligned + zmm

DELTA_PHASE 35.99 sec 29.03 sec

Speed-up = 1.23x

Attempt Optimization - 1(b), CALCB_DEL in coefficients.f90

22 Processes (Total time) Original (NaN) No NaN (expected
behaviour)

Optimized=Vectorized +
aligned + zmm

CALCB_DEL 138.31 sec 126.51 sec 35.16 sec

Total App Time 1941.66 sec 685.77 514.02

Speed-up for CALCB_DEL = 126.51/35.16 = 3.59x

Total Speed-up = 685.77/514.02 = 1.33x

Multiple MPI Procs: → Surfaces
[Parallelizing COEFFICIENTS_DKE]

● COEFFICIENTS_DKE takes 41% of total time (after removing NaN)

● COEFFICIENTS_DKE takes 33% of total time in Vectorized code

● COEFFICIENTS_DKE_GS new function which divides work between

MPI processes (takes about 13% of total time with 96 processes)

Parallelizing COEFFICIENTS_DKE_GS

● Divides main loop almost equally between MPI processes (in SURFACE_COMM_WORLD)

● MPI processes that collectively handle a surface placed in
SURFACE_COMM_WORLD

● Execution path:
IF (surface_comm_numprocs .GT. 1) THEN

CALL COEFFICIENTS_DKE_GS(...)

ELSE

CALL COEFFICIENTS_DKE(...)

END IF

Results for 22 surfaces

Processes -O3
(Round-Robin

process assign.)

-O3
(Compact process

assign.)

22 25.984 (base) 24.709 (base)

44 24.476 (5.8%) 21.482(13.06%)

48 22.307 (14.15%) 23.348(5.5%)

66 19.675 (24.28) 21.953(11.15%)

88 19.133 (26.36%) 19.053 (22.89%)

96 19.470 (25.06%) 21.139 (14.44%)

22 processes Vs 88 processes

● With 22 MPI coefficients_dke 5.43 sec per process (=119.58/22)

● With 88 MPI coefficients_dke_gs takes 1.57 sec per process

(=138.69/88)

● Speed-up per process = 5.43/1.57 = 3.45 (≈ ideal value 4)

● Majority of the difference due to MPI_Allgatherv ~ 0.15 secs per

process (=19.11/88)

Summary
● Summary

○ Identification of NaN

○ Vectorization + alignment + zmm registers: 33% improvement

○ Parallelization with 88 processes: 25% improvement (only

COEFFICIENTS_DKE parallelized)

○ Total 58% improvement

● Current status: Completed

SOLPS-ITER
(David Vicente Dorca, Cristian Morales, Gaurav

Saxena)

SOLPS-ITER

• Scrape-Off Layer Plasma Simulation (boundary plasma)

• Monte Carlo code Eirene (MPI parallelized)

• B2.5 Plasma Fluid solver (OpenMP parallelized) - bad
scaling

• Extremely difficult to install (... but …courtesy David Vicente
Dorca in 6 hours …)

• Fortran 77 (fixed form), Fortran 90

Our Focus

get_num_threads() function
[solps-iter/modules/B2.5/src/modules/b2mod_openmp.F]

❖ Ideally should emulate omp_get_num_threads() (does not)

➢ Returns OMP_NUM_THREADS when called from a non-OpenMP non-parallel

region (should return 1 because there are no threads).

➢ Returns 1 when called from OpenMP parallel region (should return

OMP_NUM_THREADS value, but no nested parallelism hence 1 returned).

❌
🚩

Replace get_num_threads()

❖ Why ?
➢ Spawning threads expensive.
➢ Called by every subroutine/function every-time !
➢ Not scalable as threads increase
➢ Threads wait in barrier at the end of single region AND parallel region i.e. 2 barriers

Version 1 Version 2

Preliminary Experiment

❖ Marenostrum 4 (MN4), Intel 2017.4, IMPI 2017.4

❖ AUG_16151_D+C+He/16151_1.6MW_2.0e19_D=0.4_chi=1.6_pump=0.90

❖ MPI + OpenMP coupled version of Eirene + B2.5

❖ KMP_AFFINITY=disabled

❖ b2mndir_ntim=20, b2mndir_elapsed=0

➢ Each run has 21 Eirene iterations

➢ Each Eirene iteration gives its run-time

➢ B2.5_Run_Time = (Real_Time) - (Total_Eirene_Run_Time)

🚩

Results
Original (LHS) Vs Optimized Version 2 (RHS)

Threads
Eirene
(sec)

Real time
(sec)

B2.5
(sec)

B2.5 Speed-up
(from 1 thread)

48 85.33 259 173.67 1.36

24 82.46 222 139.54 1.69

12 83.15 229 145.85 1.62

6 82.46 235 152.54 1.55

4 80.02 241 160.98 1.47

2 80.98 273 192.02 1.23

1 80.13 316 235.87 1

Threads
Eirene
(sec)

Real Time
(sec)

B2.5
(sec)

B2.5 Speed-up
(from 1 thread)

48 82.83 227 144.17 1.73

24 82.29 222 139.71 1.79

12 81.31 219 137.69 1.81

6 81.05 228 146.95 1.70

4 80.25 239 158.75 1.57

2 82.98 274 191.02 1.31

1 81.51 331 249.49 1.00

❖ At 48 threads, B2.5 time reduction: (173.67 - 144.17)/173.67 = 17% (recommended)

❖ At 12 threads, B2.5 time reduction: (145.85 - 137.69)/145.85 = 5.6%

Compiler Additional Flags

❖ -xHost should generate AVX-512 instructions for Intel

❖ -align array64byte should allocate 64 byte aligned arrays (except COMMON

block)

❖ -qopt-zmm-usage=high maximizes use of zmm register but Intel/2017.4

takes it as an unknown option
ifort: command line warning #10006: ignoring unknown option '-qopt-zmm-usage=high'

⇒ Warning with Intel/2017.4
⇒ available only with Intel/18.x :

❖ https://www.intel.com/content/www/us/en/developer/articles/technical/the-intel-adv
anced-vector-extensions-512-feature-on-intel-xeon-scalable.html

https://www.intel.com/content/www/us/en/developer/articles/technical/the-intel-advanced-vector-extensions-512-feature-on-intel-xeon-scalable.html
https://www.intel.com/content/www/us/en/developer/articles/technical/the-intel-advanced-vector-extensions-512-feature-on-intel-xeon-scalable.html

Total run-time Vs threads
Intel 2018.4, IMPI/2018.4, KMP_AFFINITY=disabled

Remember:
KMP_AFFINITY=disabled
else error with < 48 threads.

Vector length
increased to 8 at
several places

Anomaly !

Final comparison

Threads Total (sec) xHost+align+zmm(sec) Total(sec)

1 1156 815 816

2 722 701 665

4 900 626 597

8 686 610 583

16 625 573 564

24 908 589 553

48 904 586 575

Intel/2018.4,KMP_AFFINITY=disable
d

Intel/2018.4,
KMP_AFFINITY=scatter,verbose,norespec
t
xHost+align+zmm

Lesson of the day: KMP_AFFINITY is extremely important for performance in SOLPS-ITER

At 'b2mndr_ntim' '500'

Threads Exp. Time
(min & sec)

Exp. Time
(sec)

Ideal time
(sec)

Full B2.5
Speed-up (Sp)

1 6 m 49 sec 409 – –

2 4 m 34 sec 274 204.5 1.49

4 3 m 32 sec 212 102.25 1.92

12 2 m 45 sec 165 51.125 2.47

24 2 m 46 sec 166 25.56 2.46

48 2 m 50 sec 170 12.75 2.40

b2xpfe.F loops - problems in Vectorization

If condition

Indirect access
(array index = another array element)
E.g. vol(leftix(ix,iy),leftiy(ix,iy))

Substitute:
● leftix(ix,iy) = ix - 1
● leftiy(ix,iy) = iy

But does not hold in general !

Vectorization Report

Original

Original + Substitution

Advantage: Estimated Potential
Speed = 3.53 instead of 2.00

Threads Time (original)(Sp)
Time (sec)

(original + Subs)
Time

(original + Subs + || sfill)(Sp)
1 6.08 (1) 6.05 5.89 (1)

2 3.20 (1.9) 3.21 3.07 (1.91)

4 1.97 (3.08) 1.99 1.86 (3.16)

12 1.16 (5.24) 1.17 1.04 (5.66)

24 1.02 (5.96) 1.00 0.77 (7.65)

48 1.22 (4.98) 1.11 0.92 (6.40)

Hot Cache Effect in b2xpfe.F
[disable n > 16384 condition in sfill(...)]

❖ At 24 threads, time reduction ~ 24% (from original)
❖ At 48 threads, time reduction ~ 24.5% (from original)
❖ Speed-up of OpenMP loop region ~ 7.65 at 24 threads 🙂

Critical Section: ITER_2171_D+He+Be+Ne Scaling
‘b2mndr_ntim’ ‘100’, standalone OpenMP, 21 species, #ifndef NO_OPENMP_B2SIFRTF, critical sections removed

Threads Time (sec) Sp

1 1045 957 1 1.00

2 787 596 1.32 1.60

4 856 388 1.22 2.46

12 848 251 1.23 3.80

24 834 210 1.25 4.55

48 847 215 1.23 4.45

❖ #ifndef NO_OPENMP_B2SIFRTF enables OpenMP
❖ Removed !$OMP CRITICAL as no need (Serial or Parallel invocation both)

Function fka() in b2sifrtf.F

❖ With 24 threads, takes a total of 193 sec

❖ Loop in fka() not vectorized as -fp-model=precise used

❖ We use !$OMP SIMD reduction(+:fka)

❖ fka() vectorized (non-unit strides): takes ~ 165 sec with 24 threads

❖ Finally, 3rd dimensions of arrays rz2(ix,iy,is) and na(ix,iy,is) copied to auxiliary

contiguous arrays to remove jumps (unit-stride).

Threads Before Time
(sec)

Before Sp After Time
(sec)

After Sp Contig
Time

Contig Sp

1 957 1.00 937 1.00 890 1.00

2 596 1.60 577 1.62 555 1.60

4 388 2.46 373 2.51 367 2.42

12 251 3.80 241 3.88 242 3.67

24 210 4.55 203 4.61 208 4.27

48 215 4.45 208 4.50 211 4.21

ITER_2171_D+He+Be+Ne Scaling
‘b2mndr_ntim’ ‘100’, standalone OpenMP, 21 species, #ifndef NO_OPENMP_B2SIFRTF, critical sections removed

❖ After vectorization of loop in function fka() [although non-unit stride]
❖ ACTUAL speed-ups: 957/tx i.e. 1.72, 2.60, 3.95, 4.60 and 4.53

● “Following the presentation from the Barcelona Supercomputing Center Advanced Computing

Hub…, several of their recommendations were implemented in the code.”
● “...This includes the proper setting on the OMP_STACKSIZE variable, correcting the

get_num_threads utility routine to avoid creating unnecessary threads, removing the

superfluous critical sections in b2sifrtf, and providing better compiler optimization flags.”

● “...some more measurements of code speed-up from the removal of the b2sifrtf critical
regions, and gave a guide for optimization flags for the GCC compiler … next target for code

speed-up is the fka utility routine…”

● “...good news is that the BSC ACH team will be able to continue working with us to
improve the code performance in 2024, as we have received some renewed EUROfusion

funding for this activity.”

Summary: Mail/Meeting minutes (excerpts) from Xavier Bonin

Thank you.
Gaurav Saxena (gaurav.saxena@bsc.es)

&

David Vicente Dorca (david.vicente@bsc.es)

mailto:gaurav.saxena@bsc.es
mailto:david.vicente@bsc.es

