
 ASCOT5 porting to GPU
Gilles Fourestey, Mathieu Peybernes, EPFL EUROfusion ACH
Simppa Äkäslompolo, Jari Varje (Aalto University)

■ SCITAS

▪ ASCOT5 is a test particle orbit-following code for toroidal magnetically confined fusion devices
▪ The code uses the Monte Carlo method to solve the distribution of particles by following their

trajectories.
• The evolution of the distribution function for a test particle species a is described by the

Fokker-Planck equation

and approximated by the Langevin equation for a large number of markers that represent the
distributed function:

▪ The particles undergo collisions with a static Maxwellian
background plasma

▪ The detailed magnetic fields and the first wall can be
fully three-dimensional

ASCOT5

■ SCITAS

▪ The time evolutions of each particle are independent from each other

▪ One + two levels of parallelism:
• MPI: Particles distributed among tasks, fields replicated
• OpenMP: queue based approach
• highly vectorized using the SIMD, originally developed for KNL manycore systems as target

▪ Very good performance on CPU

ASCOT5 CPU version

■ SCITAS

Moving to GPUs first attempt: OMP-Offload hardware mapping

#pragma omp teams Master thread of each team will execute the team region
#pragma omp distribute split the iteration space among all the league of thread teams
#pragma omp parallel for split the iteration space between all the threads within a team
#pragma omp simd split an iteration space into SIMD lanes

■ SCITAS

▪ MPI+GPU levels of parallelism:
• Message Passing: particles distributed among MPI tasks, fields replicated:

One GPU per MPI process
• GPU OpenMP-offload based - 2 levels of parallelism map to:

▪ Marker queues distributed over OpenMP teams

▪ Each marker is distributed over OpenMP team threads

Teams

Threads

~ CUDA Blocks

~ CUDA Threads

- Offload

Moving to GPUs: OpenMP-Offload hardware mapping

■ SCITAS

ASCOT5 - GPU version
▪ MPI+GPU levels of parallelism:

• Message Passing: particles distributed among MPI tasks, fields replicated:
One GPU per MPI process

• GPU OpenMP-offload based - 2 levels of parallelism map to:
▪ Marker queues distributed over OpenMP teams

▪ Each marker is distributed over OpenMP team threads

#pragma omp target teams distribute
for(int iprt = 0; iprt < NbParticules ; iprt += NSIMD) {

…some work…
particle_simd_fo p; //new set of NSIMD particles
#pragma omp parallel for simd

 for(int i=0; i< NSIMD; i++) {
p.running[i] = 0;
…some work…

#pragma omp parallel for simd
 for(int i=0; i< NSIMD; i++) {

…some work…GPU

L1

L2

L2

■ SCITAS

ASCOT5 Benchmarks - Mapping

May2022 Benchmark, comparison with different compilers/platforms
- gcc11 on x86 + v100 (Phoenix@EPFL)
- XL compilers + v100 (m100@Cineca)
- intel compilers on skylake and icelake (Jed@EPFL, ASCOT5 cpu-only)
- gcc11 with OpenACC on x86 + v100 (Phoenix@EPFL)

ASCOT5 TTS [s] may2022_2dwall_go_analyticB

markers: 10000 100000

Platform Compiler

m100@CINECA OMP Offload 46 473 Power9 + v100 XL compilers

Phoenix@EPFL OMP Offload 232 2143 6138 gold + v100 gcc 11

Helvetios@EPFL OMP (cpu-only) 87 860 2x Gold 6140 intel compilers

Jed@EPFL OMP (cpu-only) 31 318 2x Platinum 8360Y intel compilers

- OMP Offload with GCC is very slow on x86
- OMP Offload is barely on-par with CPU-only code on P9

■ SCITAS

Reason? Probably multi-factor.

Reason #1: It seems gcc cannot take advantage of the
last level of parallelism although it spawns a threadblock
to do so (that’s the standard).

From nsight:
gcc: CUDA kernel launched: dim={#teams,1,1}, blocks={#threads, 32, 1}
xl : CUDA kernel launched: dim={#teams,1,1}, blocks={#threads*32, 1, 1}

Consequence: performance is divided by 32

Reason #2: the CPU approach generates one huge kernel to big for GPUs: looking at the nvptx code, it seems each
kernel uses ~1500 registers per thread:

- Reduced number of total threads, therefore reduced number of in-flight warps
- Register spilling to local/main memory

Consequence: Nsight gives 3% occupancy

ASCOT5 Benchmarks
number of teams = 160

GCC 11 L1 = omp distribute, No L2 L1 = omp distribute, L2 = omp simd

particles 10^3 10^4 10^5 10^3 10^4 10^5

NSIMD = 1 107 565 4314 110 577 4429

NSIMD = 2 110 558 4726 109 558 4750

NSIMD = 4 113 620 4651 114 623 4676

NSIMD = 8 108 608 4576 110 621 4665

NSIMD = 16 181 617 4653 176 601 4549

NSIMD = 32 307 616 4965 298 599 4844

NSIMD = 64 534 610 4902 520 596 4807

■ SCITAS

Solution #1: moving to OpenACC
- OpenACC is more mature than OpenMP offload
- gcc supports it along OpenMP offload

(-fopenacc or -fopenmp)
- OpenACC and OpenMP offload are very similar

#pragma once
#define STRINGIFY(X) #X
#define MY_PRAGMA(X) _Pragma(STRINGIFY(X))
#if !defined(_OPENMP) && !defined(_OPENACC)
#warning "No Openmp or OpenACC"
#define OMP_L1
#define OMP_L2
#define DECLARE_TARGET
#define DECLARE_TARGET_END
#endif
#ifdef _OPENMP
#warning "OpenMP"
#define OMP_L1 MY_PRAGMA(omp distribute parallel for)
#define OMP_L2 MY_PRAGMA(omp simd)
#define DECLARE_TARGET MY_PRAGMA(omp declare target)
#define DECLARE_TARGET_END MY_PRAGMA(omp end declare target
#endif
#ifdef _OPENACC
#warning "OpenACC"
#define OMP_L1 MY_PRAGMA(acc loop gang worker)
#define OMP_L2 MY_PRAGMA(acc vector)
#define DECLARE_TARGET MY_PRAGMA(acc routine vector)
#define DECLARE_TARGET_END MY_PRAGMA(warning "ACC")
#endif

OMP_L1
for(int iprt = 0; iprt < NbParticules ; iprt += NSIMD) {

…some work…
particle_simd_fo p; //new set of NSIMD particles
OMP_L2

 for(int i=0; i< NSIMD; i++) {
p.running[i] = 0;
…some work…

OMP_L2
 for(int i=0; i< NSIMD; i++) {

…some work…GPU

ASCOT5-GPU with OpenACC/OpenMP offload interop

■ SCITAS

ASCOT5 Benchmarks w/ OpenACC
May2022 Benchmark, comparison with different compilers/platforms

- gcc11 on x86 + v100 (Phoenix@EPFL)
- XL compilers + v100 (m100@Cineca)
- intel compilers on skylake and icelake (Jed@EPFL, ASCOT5 cpu-only)
- gcc11 with OpenACC on x86 + v100 (Phoenix@EPFL)

ASCOT5 TTS [s] may2022_2dwall_go_analyticB

markers: 10000 100000

Platform Compiler

m100@CINECA OMP Offload 46 473 Power9 + v100 XL compilers

Phoenix@EPFL OMP Offload 232 2143 6138 gold + v100 gcc 11

Phoenix@EPFL OpenACC 48 261 6138 gold + v100 gcc 11

Helvetios@EPFL OMP (cpu-only) 87 860 2x Gold 6140 intel compilers

Jed@EPFL OMP (cpu-only) 31 318 2x Platinum 8360Y intel compilers

- OpenACC gives CPU-like performance

■ SCITAS

■ Solution #2: Implement a new version by splitting the initial whole kernel

Current situation:

11

#pragma acc loop
for each particle
 while particle still running
 step_forward();
 end_condition_time();
 diag();
 end while
end for

Initial method

New algorithmic approach

Independent loop over particles

Dependent series of events

This leads to a huge kernel that works well for CPUs , but unfit for GPUs:
- Not enough registers
- Thread divergence
- Un-coalesced memory accesses

Solution: algorithmic modification with event-based approach

(https://www.openmp.org/wp-content/uploads/OpenMP_Telecon_Talk_final.pdf)

■ SCITAS

■ Implement a new version by splitting the initial kernel:
○ Parallelize over events instead of execute all particles
○ Could lead to hybrid CPU/GPU execution

12

#pragma acc loop
for each particle
 while particle still running
 step_forward();
 end_condition_time();
 diag();
 end while
end for

Initial method

while particles are still running
 #pragma acc loop
 for each particle still running
 step_forward();
 #pragma acc loop
 for each particle still running
 end_condition_time();
 #pragma acc loop
 for each particle still running
 diag();
end while

Event-Based

New Event-based approach

Independent events

■ SCITAS

■ “Sept2023” Benchmark:
○ Jed: 2x Platinum 8360Y, intel/2021.6.0, -Ofast -qopt-zmm-usage=high -march=native
○ Leonardo: A100, nvhpc/23.1, -O3 -acc -Minfo=accel -gpu=managed
○ Time-to-Solution, lower is better

13

Benchmarks

■ SCITAS

Next steps and Conclusions
Next steps:

- Implement packing and sorting of particles on GPUs
- Insert event-based approach in all the code
- Investigate the possibility to unify CPU and GPU version
- Share work between CPU and GPU? New hardware (Grace/Hopper) might facilitate this

Conclusions:
- ASCOT5.5 is working with OpenMP-offload and OpenACC (for simulate_fo_fixed as a POC)
- OpenMP-offload version is extremely slow with gcc, reasonably fast with XL compilers
- OpenACC version fast and we only exploited one level of parallelism
- Will be interesting to test on newer GPU hardware (ongoing test on H100 and PVC)

On a more general note
- OpenMP offload/OpenACC (i.e. directive based) is probably the way to go as opposed to CUDA/Hip

because of the high level of optimization of ASCOT5, but …
- … (performance) portability is a function of hardware, compiler version and language,
- and algorithmic modifications are necessary to get to next level of performance, but doesn’t that

contradict portability?

