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Introduction to the ORB5 code

ORB5 is:

a global, gyrokinetic, electromagnetic, multi-species code use to study turbulent transport in the core

based on a Lagrangian variational description, using a particle-in-cell (PIC) algorithm and a finite
element representation of the fields

It is written in Fortran and parallelized using:
2D MPI decomposition:
▶ Domain decomposition
▶ Domain cloning

OpenMP for multithreading support

OpenACC for GPU support

(OpenMP offload for GPU support)
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Introduction to the ORB5 code
The Fourier field solver

ORB5 uses a 2D Fourier representation of the Poisson and Ampère equations:

Aϕ = b =⇒ FAF−1Fϕ = Fb (1)

Because of the toroidal axisymmetry the equivalent system is composed of independent equations for
the toroidal n modes

Because the modes of interest are mainly aligned with the magnetic field only a small subset of poloidal
m modes are required per n modes:

m ∈ {−nq(s)−∆m,−nq(s) + ∆m} (2)

We typically use ∆m = 5 resulting in keeping 11 m modes for each n mode
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Problem with the current Fourier solver
DFTs on distributed data

To perform the DFTs, the transformed dimension needs to be contiguous
Because of the domain decomposition, we need to parallel-transpose the data:
▶ (θ, s, φp) → DFT(θ) → (m, s, φp)

▶ (m, s, φp) → // transpose → (φ, s,mp)

▶ (φ, s,mp) → DFT(φ) → (n, s,mp)

▶ (n, s,mp) → // transpose(θ) → (m, s, np)

Same applies for the inverse DFT

E. Lanti, T. Hayward-Schneider 5 / 16



Problem with the current Fourier solver
The pptransp algorithm

The current parallel algorithm is called pptransp
It uses mpi_sendrecv to exchange the distributed blocks
Then, performs the transposes locally

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5

MPI

Since the GPU porting of the particle part, the parallel transpose is the main bottleneck
Previous work from T. Ribeiro: NEMOFFT project: Improved Fourier algorithms for global
electromagnetic gyrokinetic simulations, 2013
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Local DFTs and Fourier filter



Exploiting the filter through local DFTs
Building the RHS of Poisson and Ampère equations

The current implementation works as follows:

Compute the poloidal DFT (constant factor left out for the sake of simplicity):

ρ̂mjl =

Nθ−1∑
k=0

ρjkl exp

(
−2πıkm

Nθ

)
, ∀m (3)

Parallel transpose

Compute the toroidal DFT :

ˆ̂ρmn
j =

Nφ−1∑
l=0

ρ̂mjl exp

(
−2πıln
Nφ

)
, ∀n (4)

Apply the mode filter to keep only:
▶ n ∈ {nmin, nmax}
▶ m ∈ {−nq(s) − ∆m,−nq(s) + ∆m} ∩ {mmin,mmax}, ∀n

Both DFTs are computed using the FFTW library

Parallel transpose again
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Exploiting the filter through local DFTs
Building the RHS of Poisson and Ampère equations

New implementation: compute the toroidal DFTs locally and combine with the mode filter:

Compute the poloidal DFT (same as original implementation):

ρ̂mjl =

Nθ−1∑
k=0

ρjkl exp

(
−2πıkm

Nθ

)
, ∀m (5)

Compute the toroidal DFT by splitting it “locally” to each subdomain and using the filter:

ˆ̂ρmn
j =

Nφ−1∑
l=0

ρ̂mjl exp

(
−2πıln
Nφ

)
=

∑
S

Np
φ−1∑
l=0

ρ̂mjlglob
exp

(−2πılglobn

Nφ

)
(6)

Here only the modes n ∈ {nmin, nmax} are computed and with
m ∈ {−nq(s)−∆m,−nq(s) + ∆m} ∩ {mmin,mmax}
The sum over the subdomains is done using mpi_reduce_scatter
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Exploiting the filter through local DFTs
Main differences between the algorithms

The original pptransp algorithm:

Two parallel transposes

Arrays of size
(
Nθ,Ns ,N

p
φ

)
Allows intuitive implementation of RHS building

The “local DFT” algorithm:

One reduce scatter

Arrays of size (2∆m + 1,Ns , nmax − nmin + 1)

Much more complex implementation compared to pptransp

May not work for certain signal/noise diagnostics
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Exploiting the filter through local DFTs
Initial scaling

First scaling on the Jed cluster (EPFL)
▶ 2 Intel Platinum (36 cores @ 2.4GHz), 2x25GB/s Ethernet network
▶ with GNU 11.3 + OpenMPI 4.1.3

Grid (Nθ,Ns ,Nφ) = (512, 1024, 256), nmin = 0, nmin = 64, ∆m = 5 ((11, 1024, 65))

One task per CPU to mimic the GPU setup

Up to 23% faster (32 tasks case may be due to the machine)
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Zero copy DFTs



Using MPI derived types to avoid buffer copies
A 2D example

One can use MPI derived types to perform a parallel transpose using a single call to mpi_alltoall

Depending on the implementation, this could avoid 4 pack/unpack operations

Use resized mpi_type_vector
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Using MPI derived types to avoid buffer copies
A 2D example

In practice, we get the following code:
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Using MPI derived types to avoid buffer copies
First scalings

Scalings made on the EPFL Jed cluster with 1 MPI task per CPU, on a 1024x1024x512 grid

Both GNU + OpenMPI (and Intel + Intel MPI have been tested)

Could not reach the 512 task limit... WIP
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Conclusion and possible future works

Local DFT algorithm implemented and tested in ORB5

First scaling shows that its performance can outperform pptransp (up to 20% in this case)

Improve parallel transpose using MPI derived types

MPI implementation seems to matter, more timings needed!

Properly profile the code and further optimize
Make scalings on as many machines and with as many software stacks
▶ Implement some kind of scheduler to chose the most optimal solution

Other optimizations can be added (see T. Ribeiro, 2013)

E. Lanti, T. Hayward-Schneider 16 / 16


	Introduction to the ORB5 code
	Problem with the current Fourier solver
	Local DFTs and Fourier filter
	Zero copy DFTs
	Conclusions and possible future works

