
GPU porting of GBS with
CUDA
Nicola Varini

nicola.varini@epfl.ch

Overview

● GBS computational patterns
○ RHS(plasma) - CUDA implementation
○ Solver - PETSc implementation

● Performance analysis - Leonardo vs LUMI-C
● Conclusion and future work

 GBS - Global Braginskii Solver
GBS is used to study plasma turbulence in the tokamak boundary
● Plasma model based on drift-reduced Braginskii equations

● Single species kinetic neutral model

● Time evolution: 4th order Runge-Kutta algorithm

● Spatial discretisation: 4th order finite centered differences

HPC in GBS:

● It can run efficiently on Tier-0 systems.

● Written in Fortran90 + MPI, CUDA for NVIDIA GPU

● Dependencies: MPI, HDF5, PETSc, CUDA

● Main bottlenecks:

○ RHS computation(stencil operations)

○ Poisson and Ampere solvers - PETSc

3

GBS computational pattern - RHS

● The RHS is
composed of a series
of stencil operations.

● Idea: CUDA C
implementation.

● These routines are
not modified by the
developers.

Derivative of a field along z

CUDA C++

● Ingredients:
○ Memory management, ideally accessible from Fortran and C++
○ C++ CUDA kernels
○ Call C++ CUDA kernels from fortran

● Pros:
○ Native CUDA compiler (reliable)
○ “Easy” to debug
○ “Easy” to tune
○ Portability to NVIDIA architectures.

● Cons:
○ Requires code duplication.
○ Fortran/C++ interface

■ row vs column
■ Single vs multidimensional array

CUDA Managed memory

The arrays are accessible from both CPU and GPU

Managed memory - API interoperability

Example - Fortran implementation

MEMORY ALLOCATION
convect(iysg:iyeg,ixsg:ixeg,izsg:izeg) - with ghost cells
theta%rhs_nl(iys:iye,ixs:ixe,izs:ize) - without ghost cells

C++ CUDA implementation
GPU threads - map do into ix, iy, iz threads

3D Fortran to 1D C index conversion

Fortran: theta_rhs_nl(iy,ix,iz)

The solver is
performed in the
poloidal xy plane

Many independent
linear systems

This task is performed
through PETSc (CSR
API)

Performance comparison : Leonardo vs LUMI-C

System Cores/node Mem/node GPU/node #nodes

Leonardo(GPU) 32 Intel Icy Lake 512(DDR4) 4 A100 3456

LUMI-C 128 AMD Epyc 256(DDR4) - 2048

GBS on Leonardo

-ksp_type dgmres
-pc_type hypre

-mat_type mpiaijcusparse
-vec_type cuda

petscrc

● Software stack: gcc-11.3.0 cuda-11.8.0 hdf-1.12.2
● RHS -> nvcc compiler
● Solver: PETSc
● Configuration:

○ Gcc stack with openmpi and cuda
○ ./configure --prefix=../petsc-install --with-cuda=1 --download-hypre

--download-hypre-configure-arguments="--enable-unified-memory" --with-fc=mpif90 --with-cc=mpicc
--with-cxx=mpicxx --with-cuda-arch=80 --download-amgx

○ In this way we can use HYPRE and AMGX as algebraic preconditioners in PETSc

● PETSc read a configuration file
● Easy to change parameters

Leonardo vs LUMI - TCV@0.9T

● Grid size:
○ Nx=300, Ny=600, Nz=128

● 100 plasma steps
● No neutrals
● Scaling lumi leonardo

nodes Px Py Pz

2 8 1 16 1 2

4 8 1 16 1 4

8 8 1 16 1 8

16 8 1 16 1 16

Solver

● Solver: dgmres
● Preconditioner: HYPRE/BoomerAMG

○ V cycle
○ Aggressive coarsening

-poisson_ksp_type dgmres
-poisson_ksp_rtol 1e-7
-poisson_ksp_reuse_preconditioner yes
-poisson_ksp_initial_guess_nonzero yes
-poisson_pc_type hypre
-poisson_pc_hypre_type boomeramg
-poisson_pc_hypre_boomeramg_strong_threshold 0.25
-poisson_pc_hypre_boomeramg_max_levels 30
-poisson_pc_hypre_boomeramg_agg_nl 1
-poisson_pc_hypre_boomeramg_agg_num_paths 1
-poisson_pc_hypre_boomeramg_truncfactor 0.2
-poisson_pc_hypre_boomeramg_interp_type ext+i
-mat_type mpiaijcusparse
-vec_type cuda

RHS

● Good GPU
performance at small
number of nodes

●

Timers at 16 nodes

● Poisson + Ampere is the major bottleneck.
○ 83% on LUMI
○ 58% on Leonardo

● The boundary conditions are not ported on GPU, ~ 10% of the tts.

Conclusion and future work

● Porting the RHS to GPU with CUDA show good performance with a basic
implementation.

○ No specific GPU optimization
● CUDA is reliable but cumbersome to maintain:

○ Need code duplication and Fortran/C++ interface
○ In 2024 we plan to implement the RHS with OpenMP/OpenACC

● Solver improvement:
○ Algebraic multigrid preconditioners work well on TCV.
○ Guess improvement to reduce the number of iterations.

