EUROfusion

Investigation of edge velocity shear generation with NBI for QH-mode in DEMO

E. Fable

MPG-IPP Garching
Acknowledgments: P. Vincenzi (CNR, RFX Padova, IT) for NBI input data
KDI\#1-8 review meeting, 21 Apr 2020

DEMO QH-mode scenario 2019

- DEMO parameters (scenario 2017):

$$
\mathrm{R}=8.94 \mathrm{~m}
$$

$$
\mathrm{a}=2.94 \mathrm{~m}
$$

$$
\mathrm{B}_{\mathrm{T}}=4.89 \mathrm{~T}
$$

$$
\mathbf{I p}=19.07 \mathrm{MA}
$$

$$
\mathbf{n}_{\text {avg }} \sim 8 * 10^{19} \mathrm{~m}^{-3}
$$

$$
\mathbf{k}=1.7
$$

$$
\text { triang }=0.33
$$

- $\mathrm{P}_{\text {aux }} \sim$ to be calculated MW
- $\mathrm{P}_{\text {fus }} \sim 2 \mathrm{GW}$
- $\mathrm{P}_{\mathrm{rad}}$, core $\sim 300 \mathrm{MW}$
$-\mathrm{P}_{\text {sep }} / \mathrm{P}_{\mathrm{LH}} \sim 1.5$

Physics to be investigated

- QH mode requires a certain velocity shear to be triggered [A. M. Garofalo et al., NF 2011]
- Basically, ExB shear > (value), linked to edge MHD (i.e. Alfvén speed)
- The dimensionless criterion chosen here is (0.16 is arbitrary):

$$
\begin{aligned}
& \frac{a}{V_{A}} a \frac{d \Omega}{d r} \approx 0.16 ; \\
& V_{A}=\frac{B}{\sqrt{\left(\mu_{0} n M\right)}} ; \quad E_{r}=B_{\varphi}\left(V_{d i a}-V_{\theta}\right)+B_{\theta} V_{\varphi}
\end{aligned}
$$

$$
\Omega=\frac{E_{r}}{R B_{\theta}}=\frac{B_{\varphi}}{R B_{\theta}}\left(V_{d i a}-V_{\theta}\right)+\frac{V_{\varphi}}{R}=\frac{q}{r}\left(V_{d i a}-V_{\theta}\right)+\frac{V_{\varphi}}{R} ;
$$

- where a is the minor radius, r is the local minor radius
- Note that $\mathrm{V}_{\text {dia }}$ is large and negative, i.e. it is much more convenient to inject counter-current toroidal rotation rather than co-current

Value for DEMO

- Applying the criterion for DEMO we get ($w_{\text {ped }}=15 \mathrm{~cm}$):

$$
\begin{gathered}
\quad \frac{a}{V_{A}} a \frac{d \Omega}{d r} \approx 0.16 ; \quad \frac{d \Omega}{d r} \approx \frac{\Omega}{w_{p e d}} \\
\rightarrow \Omega \approx 2.55 \cdot 10^{4}[\mathrm{rad} / \mathrm{s}] \rightarrow V_{E} \approx-19 \mathrm{~km} / \mathrm{s}
\end{gathered}
$$

- First estimate of "natural" (i.e. without rotation) edge shear is $V_{E} \sim-8 \mathrm{~km} / \mathrm{s}$
- Missing $\sim-10 \mathrm{~km} / \mathrm{s}$ of perpendicular rotation, that is $\sim-120 \mathrm{~km} / \mathrm{s}$ of toroidal rotation which have to come from NBI counter-current injection (or $\sim+360 \mathrm{~km} / \mathrm{s}$ from co-current torque)
- So... how much torque is required to drive $\sim-120 \mathrm{~km} / \mathrm{s}$ of pedestal top rotation?
- Assuming that the angular momentum confinement time in the edge is the same as the energy confinement time, this would mean a torque of:

Torque for DEMO

- So... how much torque is required to drive $\sim-100 \mathrm{~km} / \mathrm{s}$ of pedestal top rotation?
- Assuming that the angular momentum confinement time in the edge is the same as the energy confinement time, this would mean a torque of:

$$
\begin{gathered}
S \chi_{\varphi} n R M \frac{V_{\varphi}}{w_{\text {ped }}}=T_{\varphi} \\
S=1320\left[\mathrm{~m}^{2}\right] ; \quad \chi_{\varphi} \approx 0.25 ; \quad n=4.2 \\
T_{\varphi}[\mathrm{Nm}] \approx 400[\mathrm{Nm}]
\end{gathered}
$$

- very rough calculation, to be done with ASTRA properly.
- Result: confirmed by ASTRA

Results from P. Vincenzi @ 76 MW

Operational space @ 76 MW

- very narrow operational space
- expect linearity in power, which would make e.g. 300 keV available @ 140 MW

Discussion

- If a dimensionless parameter for the QH mode entrance is assumed, for DEMO this leads to a certain requirements in edge radial electric field shearing
\rightarrow as already mentioned by Pietro, needs large torque
- Since DEMO naturally has already a rather large counter-current ExB rotation, to reach the desired value it is better to inject counter-current torque to add the remaining rotation on top of the natural rotation
- This remaining counter-current rotation/torque is estimated and is the ultimate result of the study. The relation by torque and power is provided by the work done by P. Vincenzi
- Regarding pedestal rotation vs torque, the model assumes a pedestal confinement time which is the same in angular momentum as well as in ion energy, and given by the local transport coefficients
\rightarrow to check against experimental evidence

Conclusions \& outlook

- The chosen criterion is just the DIII-D one times a machine size to make it dimensionless \rightarrow absolutely no first principles here
- It could be that the reality is more favourable (more unfavourable means no QH-mode)
- Present results show that with the assumptions used here the required torque is at the limit of the lowest energy, highest tangency radius cases done by Pietro.
- Main things to improve:
- QH criterion
- pedestal transport model for toroidal rotation

