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Introduction
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• Negative  has been experimentally observed to:


• Improve confinement


• Increase the L->H power threshold, thereby keeping the plasma in 
L-mode and avoiding ELMs


• Move the divertor to a larger major radius


• Use local gyrokinetic GENE simulations to compare negative  and 
positive  DEMO equilibria
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Future plans
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• Will soon receive computational resources enabling more simulations



• Simulations near the edge are difficult due to:


• Large values of magnetic shear


• Large logarithmic gradients


• Simulations in the core are problematic 
because:


• Sawtooth inversion radius at 


• Impact of triangularity is weaker

ρ ≈ 0.6
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Past work: Selecting minor radius of ρ = 0.72



Past work: Nonlinear resolution study

• Resolution study of a negative  case for the most concerning 
parameters seems satisfactory

δ
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Past work: Nonlinear results

• Negative  cases have lower total heat flux for nominal DEMO


• Positive  cases exhibit an unusual oscillation from the zonal flows

δ
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Future plans
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• Will soon receive computational resources enabling more simulations


1. Perform resolution study for a positive  case to resolve 
oscillation
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Correction: Nonlinear stiffness study

• Negative  has a higher critical 
gradient

δ
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Correction: Nonlinear stiffness study
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• Negative  has a higher critical 
gradient


• Stiffness is similar

δ



Future plans
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• Will soon receive computational resources enabling more simulations


1. Perform resolution study for a positive  case to resolve 
oscillation

δ

2. Add points to critical gradient study at  
and repeat for higher  case

ρ = 0.72
Ip = 20MA



Future plans
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• Will soon receive computational resources enabling more simulations


1. Perform resolution study for a positive  case to resolve 
oscillation

δ
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2. Add points to critical gradient study at  
and repeat for higher  case


3. Repeat resolution study and simulations at 
, watching for multi-scale effects 

and possibly using the non-twisting flux tube 
simulation domain

ρ = 0.72
Ip = 20MA

ρ = {0.62, 0.82}



Thank you!



• Simulations near the edge are difficult due to:


• Large values of magnetic shear
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Selecting minor radius of ρ = 0.72



• Simulations near the edge are difficult due to:


• Large values of magnetic shear


• Large logarithmic gradients
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Selecting minor radius of ρ = 0.72
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• Simulations near the edge are difficult due to:


• Large values of magnetic shear


• Large logarithmic gradients


• Simulations in the core are problematic 
because:


• Sawtooth inversion radius at ρ ≈ 0.6
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Selecting minor radius of ρ = 0.72
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Linear results with adiabatic electrons

• Found a fairly broad spectrum of unstable modes


• Critical gradient for negative  is maybe a bit largerδ

16

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0  0.5  1  1.5  2  2.5  3  3.5  4

G
ro

w
th

 r
at

e 
(c

S/
R 0

)

ky ρi

pos18
0.7*R0/LTi, pos18

neg18
0.7*R0/LTi, neg18



Nonlinear results with adiabatic electrons

• Results are mixed, but indicates that negative  increases energy 
transport


• Main purpose is to find most strongly driven case for resolution study

δ
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Nonlinear resolution study with adiabatic electrons
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• Resolution study of the neg20 case indicates that  should be 
doubled and  can be halved

Ly
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• Resolution study of the neg20 case indicates that  should be 
doubled and  can be halved

Ly
Nx

Nonlinear resolution study with adiabatic electrons
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Linear results with kinetic electrons

• See surprising divergence with small scale turbulence (concerning!)


• Again, critical gradient for negative  is maybe a bit largerδ
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•  A surprising divergence with small scale turbulence

Linear results with kinetic electrons

A common rule of thumb, comparing  with 

,  suggests that multi-scale interactions remain weak

γ/ky
ITG

≈ 2.2

γ/ky
ETG

≈ 1.0
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Staebler et al. Nucl. Fusion 57 (2017).
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Nonlinear resolution study with kinetic electrons

• Resolution study of the neg20 case for the most concerning 
parameters seems satisfactory
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Nonlinear resolution study with kinetic electrons

• Time-averaged spectra look normal (i.e. no pile-up at high )k
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Nonlinear results with kinetic electrons

• Same trends hold true for required heating power (i.e. adjusting for 
differences in surface area, temperature, and density)
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Nonlinear results with kinetic electrons

• Electron heat flux is more strongly affected by reversing δ
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Electron pressure profile from TGLF
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Total heat flux from TGLF
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Ion heat flux from TGLF
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Electron heat flux from TGLF

29



Zonal oscillations from nonlinear kinetic simulations
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Input parameters for nonlinear kinetic simulations
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omt/omn = 2.75 omt/omn = 2.71 omt/omn = 3.16 omt/omn = 3.38



Input parameters for nonlinear adiabatic sims.
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omt/omn = 2.71omt/omn = 2.71 omt/omn = 2.62 omt/omn = 3.28 omt/omn = 3.57



 as a function of poloidal angle⃗∇ ρ
2
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Flux surface shape in the poloidal plane
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