Gyrokinetic calculations for a negative triangularity DEMO

Justin Ball, Olivier Sauter, and Stephan Brunner Swiss Plasma Center, EPFL

KDII\#8 Progress Meeting 21 April 2020

Introduction

- Negative δ has been experimentally observed to:
- Improve confinement
- Increase the L->H power threshold, thereby keeping the plasma in L-mode and avoiding ELMs
- Move the divertor to a larger major radius
- Use local gyrokinetic GENE simulations to compare negative δ and positive δ DEMO equilibria

Future plans

- Will soon receive computational resources enabling more simulations

Past work: Selecting minor radius of $\rho=0.72$

- Simulations near the edge are difficult due to:
- Large values of magnetic shear
- Large logarithmic gradients
- Simulations in the core are problematic because:
- Sawtooth inversion radius at $\rho \approx 0.6$
- Impact of triangularity is weaker

Past work: Nonlinear resolution study

- Resolution study of a negative δ case for the most concerning parameters seems satisfactory

Past work: Nonlinear results

- Negative δ cases have lower total heat flux for nominal DEMO
- Positive δ cases exhibit an unusual oscillation from the zonal flows

Future plans

- Will soon receive computational resources enabling more simulations

1. Perform resolution study for a positive δ case to resolve oscillation

Correction: Nonlinear stiffness study

- Negative δ has a higher critical gradient

Correction: Nonlinear stiffness study

- Negative δ has a higher critical gradient
- Stiffness is similar

Future plans

- Will soon receive computational resources enabling more simulations

1. Perform resolution study for a positive δ case to resolve oscillation
2. Add points to critical gradient study at $\rho=0.72$ and repeat for higher $I_{p}=20 \mathrm{MA}$ case

Future plans

- Will soon receive computational resources enabling more simulations

1. Perform resolution study for a positive δ case to resolve oscillation
2. Add points to critical gradient study at $\rho=0.72$ and repeat for higher $I_{p}=20 \mathrm{MA}$ case
3. Repeat resolution study and simulations at $\rho=\{0.62,0.82\}$, watching for multi-scale effects and possibly using the non-twisting flux tube simulation domain

Selecting minor radius of $\rho=0.72$

- Simulations near the edge are difficult due to:
- Large values of magnetic shear

Selecting minor radius of $\rho=0.72$

- Simulations near the edge are difficult due to:
- Large values of magnetic shear
- Large logarithmic gradients

Selecting minor radius of $\rho=0.72$

- Simulations near the edge are difficult due to:
- Large values of magnetic shear
- Large logarithmic gradients
- Simulations in the core are problematic because:

Linear results with adiabatic electrons

- Found a fairly broad spectrum of unstable modes
- Critical gradient for negative δ is maybe a bit larger

Nonlinear results with adiabatic electrons

- Results are mixed, but indicates that negative δ increases energy transport
- Main purpose is to find most strongly driven case for resolution study

Nonlinear resolution study with adiabatic electrons

- Resolution study of the neg20 case indicates that L_{y} should be doubled and N_{x} can be halved

Nonlinear resolution study with adiabatic electrons

- Resolution study of the neg20 case indicates that L_{y} should be doubled and N_{x} can be halved

Linear results with kinetic electrons

- See surprising divergence with small scale turbulence (concerning!)
- Again, critical gradient for negative δ is maybe a bit larger

Linear results with kinetic electrons

- A common rule of thumb, comparing $\gamma /\left.k_{y}\right|_{I T G} \approx 2.2$ with
$\gamma /\left.k_{y}\right|_{E T G} \approx 1.0$, suggests that multi-scale interactions remain weak

Nonlinear resolution study with kinetic electrons

- Resolution study of the neg20 case for the most concerning parameters seems satisfactory

Nonlinear resolution study with kinetic electrons

- Time-averaged spectra look normal (i.e. no pile-up at high k)

Nonlinear results with kinetic electrons

- Same trends hold true for required heating power (i.e. adjusting for differences in surface area, temperature, and density)

Nonlinear results with kinetic electrons

- Electron heat flux is more strongly affected by reversing δ

Electron pressure profile from TGLF

Total heat flux from TGLF

Ion heat flux from TGLF

Electron heat flux from TGLF

Zonal oscillations from nonlinear kinetic simulations

Input parameters for nonlinear kinetic simulations

$\mathrm{omt} / \mathrm{omn}=2.71$
$\mathrm{omt} / \mathrm{mn}=3.16$
$\mathrm{omt} / \mathrm{omn}=3.38$

Input parameters for nonlinear adiabatic sims.

$\mathrm{omt} / \mathrm{omn}=2.71$

$\mathrm{omt} / \mathrm{omn}=2.62$

$\mathrm{omt} / \mathrm{omn}=3.28$
neg20

$\mathrm{omt} / \mathrm{omn}=3.57$
$\left.\vec{\nabla} \rho\right|^{2}$ as a function of poloidal angle

Flux surface shape in the poloidal plane

