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Introduction

• W7-X is said to be ITG dominated [Xanthopoulos et al., 2021; Proll et al. 

2022; …]; focus primarily on ion transport

• Role of electron-induced turbulence on transport unclear [HGW 

experimentalists, private communication]

• Simulations mainly performed in flux-tube domain, things like radial electric

field or other global effects (mostly) missing



• Present (preliminary) results of first-ever global W7-X simulation with

experimental parameters

• Compare radially global (RG) simulation with flux-tube (FT) and full-flux-

surface (FFS) simulations to identify impact of 𝐸𝑟 and ExB-shear

• Identify ion-scale core turbulence present

• Discuss impact of ETGs 
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In this talk



• Use parameters of W7-X discharge 20181016.037 (t=4-5 s) [Xanthopoulos et al., 2021]

• We focus primarily on

𝜌𝑡𝑜𝑟 ∈ [0.3,0.8]

• Simulations include: kinetic electrons, EM effects, collisions, radial electric field

• FFS simulations with constant 𝐸𝑟, FT simulations no 𝐸𝑟 (in the beginning)
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The discharge



• Compare global fluxes against local results => more diagnostics available

• FFS: 5 radial positions, FT: 4 different tubes per position (𝜌𝑡𝑜𝑟 ∈ 0.4,0.8 , 𝛼 ∈ 0,0.75 ∗ 2𝜋/5)
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• Compare global fluxes against local results => more diagnostics available

• FFS: 5 radial positions, FT: 4 different tubes per position (𝜌𝑡𝑜𝑟 ∈ 0.4,0.8 , 𝛼 ∈ 0,0.75 ∗ 2𝜋/5)

• Decent agreement in the core;

FT transport too high in the outer regions

• Disagreement might be

caused by 𝐸𝑟 or ExB-shear
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Comparison between simulation domains



• Local simulations can account for 𝐸𝑟-shear

by linearising normalised ExB-velocity
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• Local simulations can account for 𝐸𝑟-shear

by linearising normalised ExB-velocity

• Impact in the inner region weak, as expected

• FT now agrees much better with global at 

𝜌𝑡𝑜𝑟 = 0.8, where shear is strongest
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• Local simulations can account for 𝐸𝑟-shear

by linearising normalised ExB-velocity

• Impact in the inner region weak, as expected

• FT now agrees much better with global at 

𝜌𝑡𝑜𝑟 = 0.8, where shear is strongest

• 𝐸𝑟 has hardly any impact in FFS

• 𝐸𝑟-shear: much better agreement of

FFS and FT with global

=> 𝐸𝑟-shear even has noticeable effect

in standard discharges; what happens

e.g. with pellets? 1 3

Effect of 𝑬𝒓 on local simulations



• Core: good match of 𝑄𝑖 , 𝑄𝑒 too low

• 𝜌𝑡𝑜𝑟 > 0.5: 𝑄𝑖 too high, 𝑄𝑒 too

low

Focus on core
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Not compatible with ITG only
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• Core: good match of 𝑄𝑖 , 𝑄𝑒 too low

• 𝜌𝑡𝑜𝑟 > 0.5: 𝑄𝑖 too high, 𝑄𝑒 too

low

Focus on core

• 𝑄𝑒 ≈ 𝑄𝑖 in simulation, 𝑄𝑒 ≫ 𝑄𝑖

in power balance

Not compatible with ITG only

[Kotschenreuther et al., 2019]

 Presence of TEMs?
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Simulation and power balance do not support ITG only



• RG/FFS: While 𝑄𝑖 is slightly more localised, 𝑄𝑒 clearly shows multiple maxima in z direction for 

every field line
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• RG/FFS: While 𝑄𝑖 is slightly more localised, 𝑄𝑒 clearly shows multiple maxima in z direction for 

every field line

• FT simulation in bean-shaped tube: 𝑄𝑖 has multiple maxima, 𝑄𝑒 clearly follows magnetic well 

structure

 Possible ITG-TEM hybrid? 
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Spatial structure at 𝝆𝒕𝒐𝒓 = 𝟎. 𝟒 shows mixed structure



• Linear spectra show increasing

growth rates, all having positive

frequency

• Quasilinear heat flux ratios indicate strong

coupling between ion and electron channels

[Xanthopoulos et al., 2007]
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• Linear spectra show increasing

growth rates, all having positive

frequency

• Quasilinear heat flux ratios indicate strong

coupling between ion and electron channels

[Xanthopoulos et al., 2007]

• Comparing with nonlinear spectrum,

the important range of wavenumbers

seems to be covered

• Positive frequency + trapped electron

characteristics => ITG-TEM hybrid

2 2

Flux-tube simulations indicate presence of hybrid modes



• Deactivate temperature gradients in flux-tube

to see contributions to drive

• Temperature gradients seem to drive most

of the respective transport
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• Temperature gradients seem to drive most

of the respective transport

• Setting 
𝑎

𝐿𝑇𝑒
= 0: ion flux mostly ballooning

(see [Xanthopoulos et al., 2021]), very small

electron transport => ITG
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• Deactivate temperature gradients in flux-tube

to see contributions to drive

• Temperature gradients seem to drive most

of the respective transport

• Setting 
𝑎

𝐿𝑇𝑒
= 0: ion flux mostly ballooning

(see [Xanthopoulos et al., 2021]), very small

electron transport => ITG

• Setting 
𝑎

𝐿𝑇𝑖
= 0: no ion transport, 𝑄𝑒 is missing

central peak => pure ∇𝑇𝑒-driven TEM 

=> Most likely, one sees an ITG-TEM hybrid in the

experiment
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Turning off gradients



• GENE-3D only simulates transport on ion-scales

What about ETGs?

2 6

ETGs cause significant electron transport in the core



• GENE-3D only simulates transport on ion-scales

What about ETGs?

 Add electron-scale heat flux

obtained by GENE (FT, adiabatic ions)

2 7

ETGs cause significant electron transport in the core



• GENE-3D only simulates transport on ion-scales
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 Add electron-scale heat flux

obtained by GENE (FT, adiabatic ions)

• Core: almost 1:1 between ion

and electron scales

• Outer region: only small impact
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• GENE-3D only simulates transport on ion-scales

What about ETGs?

 Add electron-scale heat flux

obtained by GENE (FT, adiabatic ions)

• Core: almost 1:1 between ion

and electron scales

• Outer region: only small impact

 ETGs contribute significantly in the core, in agreement with [Weir et al., 2021]

• Taking into account electron scales important for flux-matching and profile prediction of W7-X
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ETGs cause significant electron transport in the core



• Start by comparing ETG heat flux

of different field lines

• Only very small variation for most

of the radial positions

=> Use 𝛼 = 0 from now on

3 0

Analysis of ETG transport



Several factors could play a role:

• Large 𝜏 = 𝑇𝑒/𝑇𝑖 is known to stabilise ETG
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behaviour
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Several factors could play a role:

• Large 𝜏 = 𝑇𝑒/𝑇𝑖 is known to stabilise ETG

=> trend is opposite to observed ETG 

behaviour

• Normalised Debye length

෠𝜆𝐷𝑒 = 𝐵𝑟𝑒𝑓
2 /(4𝜋𝑐2𝑚𝑒𝑛𝑒(𝑥)) has stabilising effect
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Several factors could play a role:

• Large 𝜏 = 𝑇𝑒/𝑇𝑖 is known to stabilise ETG

=> trend is opposite to observed ETG 

behaviour

• Normalised Debye length

෠𝜆𝐷𝑒 = 𝐵𝑟𝑒𝑓
2 /(4𝜋𝑐2𝑚𝑒𝑛𝑒(𝑥)) has stabilising effect

=> Simulations without Debye shielding still 

show weak ETGs in the outer region
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• Gradient ratio 𝜂𝑒 = 𝐿𝑛/𝐿𝑇𝑒 is known to

suppress ETG; has been proposed to

explain weak ETG transport in outer region

in [Plunk et al., 2019]
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• Gradient ratio 𝜂𝑒 = 𝐿𝑛/𝐿𝑇𝑒 is known to

suppress ETG; has been proposed to

explain weak ETG transport in outer region

in [Plunk et al., 2019]

=> Simulations with
𝑎

𝐿𝑛
= 0 still show

decreasing heat flux

We argue that ETG is not stiff enough:

• 𝑎/𝐿𝑇𝑒 increases, but e.g. 𝑇𝑒 decreases as well

• Normalised electron heat flux (in Gyrobohm

units) increases by one order of magnitude

• Gyrobohm scaling factor decreases by two orders

=> Product of the two (times area) will decrease overall

3 8

Why is ETG weak in the outer region?



• Gradient ratio 𝜂𝑒 = 𝐿𝑛/𝐿𝑇𝑒 is known to

suppress ETG; has been proposed to

explain weak ETG transport in outer region

in [Plunk et al., 2019]

=> Simulations with
𝑎

𝐿𝑛
= 0 still show

decreasing heat flux

We argue that ETG is not stiff enough:

• 𝑎/𝐿𝑇𝑒 increases, but e.g. 𝑇𝑒 decreases as well

• Normalised electron heat flux (in Gyrobohm

units) increases by one order of magnitude

• Gyrobohm scaling factor decreases by two orders

=> Product of the two (times area) will decrease overall

• Impact of geometry on ETG stiffness will be investigated in the future
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• Experimental profiles come with error bars; stiff transport implies high chance of not 

matching power balance with nominal profiles right away
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• Experimental profiles come with error bars; stiff transport implies high chance of not 

matching power balance with nominal profiles right away

Use transport code (e.g. TANGO) coupled with gyrokinetic code (ideally global code) to

vary the profiles within experimental error bars

• Ongoing work at IPP Garching, but very expensive (if done with GENE-3D)
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• Experimental profiles come with error bars; stiff transport implies high chance of not 

matching power balance with nominal profiles right away

Use transport code (e.g. TANGO) coupled with gyrokinetic code (ideally global code) to

vary the profiles within experimental error bars

• Ongoing work at IPP Garching, but very expensive (if done with GENE-3D)

• Even without flux-matching, one can argue about the role of electron-induced turbulence
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• Gas puff: Assume Γ𝑡𝑜𝑡 = 0 in the core

• GENE-3D particle transport

is too positive
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• Gas puff: Assume Γ𝑡𝑜𝑡 = 0 in the core

• GENE-3D particle transport

is too positive

Lower Γ by

a) 
𝑎

𝐿𝑛

b)  
𝑎

𝐿𝑇𝑒
[Thienpondt et al. 2023]

Both increase ∇𝑇𝑒-TEM and ETG drive as well

Even without matching power balance, electron-induced turbulence most likely a key

player in core transport
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Alternative: Look at particle transport



• First-ever global simulation of experimental discharge of W7-X with kinetic electrons
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• First-ever global simulation of experimental discharge of W7-X with kinetic electrons

• Although not matching experimental fluxes: ∇𝑇𝑒-driven TEMs and ETGs potential 

candidate to explain electron core transport

Retaining finite 
𝑎

𝐿𝑇𝑒
is key

• Take it with a grain of salt: TANGO runs of multiple experimental discharges ongoing (D. 

Fernando), which will give further insight

5 0

Conclusions
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