

Global gyrokinetic analysis of Wendelstein 7-X discharge: unveiling the importance of trapped-electron-mode and electrontemperature-gradient turbulence

Felix Wilms, Alejandro Banon Navarro, Thomas Windisch, Frank Jenko, W7-X Team

Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany

Max Planck Institute for Plasma Physics, Wendelsteinstraße 1, 17491 Greifswald, Germany

EUROfusion

0

0

Introduction

• W7-X is said to be ITG dominated [Xanthopoulos et al., 2021; Proll et al. 2022; ...]; focus primarily on ion transport

Introduction

- W7-X is said to be ITG dominated [Xanthopoulos et al., 2021; Proll et al. 2022; ...]; focus primarily on ion transport
- Role of electron-induced turbulence on transport unclear [HGW experimentalists, private communication]

Introduction

- W7-X is said to be ITG dominated [Xanthopoulos et al., 2021; Proll et al. 2022; ...]; focus primarily on ion transport
- Role of electron-induced turbulence on transport unclear [HGW experimentalists, private communication]
- Simulations mainly performed in flux-tube domain, things like radial electric field or other global effects (mostly) missing

- Present (preliminary) results of first-ever global W7-X simulation with experimental parameters
- Compare radially global (RG) simulation with flux-tube (FT) and full-fluxsurface (FFS) simulations to identify impact of E_r and ExB-shear
- Identify ion-scale core turbulence present
- Discuss impact of ETGs

The discharge

• Use parameters of W7-X discharge 20181016.037 (t=4-5 s) [Xanthopoulos et al., 2021]

- Simulations include: kinetic electrons, EM effects, collisions, radial electric field
- FFS simulations with constant E_r , FT simulations no E_r (in the beginning)

Comparison between simulation domains

- Compare global fluxes against local results => more diagnostics available
- FFS: 5 radial positions, FT: 4 different tubes per position ($\rho_{tor} \in [0.4, 0.8], \alpha \in [0, 0.75] * 2\pi/5$)

Comparison between simulation domains

- Compare global fluxes against local results => more diagnostics available
- FFS: 5 radial positions, FT: 4 different tubes per position ($\rho_{tor} \in [0.4, 0.8], \alpha \in [0, 0.75] * 2\pi/5$)

Comparison between simulation domains

- Compare global fluxes against local results => more diagnostics available
- FFS: 5 radial positions, FT: 4 different tubes per position ($\rho_{tor} \in [0.4, 0.8], \alpha \in [0, 0.75] * 2\pi/5$)
- Decent agreement in the core;
 FT transport too high in the outer regions
- Disagreement might be caused by *E_r* or ExB-shear

• Local simulations can account for E_r -shear by linearising normalised ExB-velocity

- Local simulations can account for E_r -shear by linearising normalised ExB-velocity
- Impact in the inner region weak, as expected
- FT now agrees much better with global at $\rho_{tor} = 0.8$, where shear is strongest

- Local simulations can account for E_r -shear by linearising normalised ExB-velocity
- Impact in the inner region weak, as expected
- FT now agrees much better with global at $\rho_{tor} = 0.8$, where shear is strongest
- E_r has hardly any impact in FFS
- E_r -shear: much better agreement of FFS and FT with global

	$Q_{ m ions} \cdot A [{ m MW}]$	$Q_{ m electrons} \cdot A \left[{ m MW} \right]$
Flux-tube	3.34 ± 0.11	0.80 ± 0.02
Flux-tube (with $\hat{\gamma}_{\text{ExB}}$)	2.34 ± 0.04	0.60 ± 0.01
Flux-surface (no $E_{\rm r}$)	2.32 ± 0.06	0.44 ± 0.01
Flux-surface (with $E_{\rm r}$)	2.30 ± 0.05	0.44 ± 0.01
Flux-surface (with $E_{\rm r} \& \hat{\gamma}_{\rm ExB}$)	1.77 ± 0.03	0.36 ± 0.01
Global	1.77 ± 0.08	0.30 ± 0.02

- Local simulations can account for *E_r*-shear by linearising normalised ExB-velocity
- Impact in the inner region weak, as expected
- FT now agrees much better with global at $\rho_{tor} = 0.8$, where shear is strongest
- E_r has hardly any impact in FFS
- *E_r*-shear: much better agreement of FFS and FT with global

=> E_r -shear even has noticeable effect in standard discharges; what happens e.g. with pellets?

	$Q_{ m ions} \cdot A [{ m MW}]$	$Q_{ m electrons} \cdot A \left[{ m MW} ight]$
Flux-tube	3.34 ± 0.11	0.80 ± 0.02
Flux-tube (with $\hat{\gamma}_{\text{ExB}}$)	2.34 ± 0.04	0.60 ± 0.01
Flux-surface (no $E_{\rm r}$)	2.32 ± 0.06	0.44 ± 0.01
Flux-surface (with $E_{\rm r}$)	2.30 ± 0.05	0.44 ± 0.01
Flux-surface (with $E_{\rm r} \& \hat{\gamma}_{\rm ExB}$)	1.77 ± 0.03	0.36 ± 0.01
Global	1.77 ± 0.08	0.30 ± 0.02

Simulation and power balance do not support ITG only

- $\rho_{tor} > 0.5$: Q_i too high, Q_e too low
- \Rightarrow Focus on core

•

Wendelstei

Simulation and power balance do not support ITG only

• $\rho_{tor} > 0.5$: Q_i too high, Q_e too low

 \Rightarrow Focus on core

•

• $Q_e \approx Q_i$ in simulation, $Q_e \gg Q_i$ in power balance

 \Rightarrow Not compatible with ITG only [Kotschenreuther et al., 2019]

Simulation and power balance do not support ITG only

• $\rho_{tor} > 0.5$: Q_i too high, Q_e too low

 \Rightarrow Focus on core

٠

• $Q_e \approx Q_i$ in simulation, $Q_e \gg Q_i$ in power balance

 \Rightarrow Not compatible with ITG only [Kotschenreuther et al., 2019]

 \Rightarrow Presence of TEMs?

Spatial structure at $\rho_{tor} = 0.4$ shows mixed structure

 RG/FFS: While Q_i is slightly more localised, Q_e clearly shows multiple maxima in z direction for every field line

Spatial structure at $\rho_{tor} = 0.4$ shows mixed structure

 RG/FFS: While Q_i is slightly more localised, Q_e clearly shows multiple maxima in z direction for every field line

 FT simulation in bean-shaped tube: Q_i has multiple maxima, Q_e clearly follows magnetic well structure

Spatial structure at $\rho_{tor} = 0.4$ shows mixed structure

 RG/FFS: While Q_i is slightly more localised, Q_e clearly shows multiple maxima in z direction for every field line

- FT simulation in bean-shaped tube: Q_i has multiple maxima, Q_e clearly follows magnetic well structure
- \Rightarrow Possible ITG-TEM hybrid?

Flux-tube simulations indicate presence of hybrid modes

- Linear spectra show increasing growth rates, all having positive frequency
- Quasilinear heat flux ratios indicate strong coupling between ion and electron channels [Xanthopoulos et al., 2007]

Flux-tube simulations indicate presence of hybrid modes

- Linear spectra show increasing growth rates, all having positive frequency
- Quasilinear heat flux ratios indicate strong coupling between ion and electron channels [Xanthopoulos et al., 2007]

 Comparing with nonlinear spectrum, the important range of wavenumbers seems to be covered

Flux-tube simulations indicate presence of hybrid modes

- Linear spectra show increasing • growth rates, all having positive frequency
- Quasilinear heat flux ratios indicate strong coupling between ion and electron channels [Xanthopoulos et al., 2007]

Comparing with nonlinear spectrum, the important range of wavenumbers seems to be covered

Positive frequency + trapped electron ٠ characteristics => ITG-TEM hybrid

Wendelstein 7-X

Turning off gradients

• Deactivate temperature gradients in flux-tube to see contributions to drive

Case	$Q_{ m i} \cdot A [{ m MW}]$	$Q_{\mathrm{e}} \cdot A \left[\mathrm{MW} \right]$
Full	0.42 ± 0.05	0.49 ± 0.07
$a/L_{T_e} = 0$	0.49 ± 0.06	0.07 ± 0.01
$a/L_{T_i} = 0$	0.01 ± 0.0	0.18 ± 0.01

• Temperature gradients seem to drive most of the respective transport

Turning off gradients

- Deactivate temperature gradients in flux-tube to see contributions to drive
- Temperature gradients seem to drive most of the respective transport
- Setting $\frac{a}{L_{T_e}} = 0$: ion flux mostly ballooning (see [Xanthopoulos et al., 2021]), very small electron transport => ITG
- Setting $\frac{a}{L_{T_i}} = 0$: no ion transport, Q_e is missing central peak => pure ∇T_e -driven TEM

Turning off gradients

- Deactivate temperature gradients in flux-tube to see contributions to drive
- Temperature gradients seem to drive most of the respective transport
- Setting $\frac{a}{L_{T_e}} = 0$: ion flux mostly ballooning (see [Xanthopoulos et al., 2021]), very small electron transport => ITG
- Setting $\frac{a}{L_{T_i}} = 0$: no ion transport, Q_e is missing central peak => pure ∇T_e -driven TEM
- => Most likely, one sees an ITG-TEM hybrid in the experiment

GENE-3D only simulates transport on ion-scales

 \Rightarrow What about ETGs?

- GENE-3D only simulates transport on ion-scales
 ⇒ What about ETGs?
- \Rightarrow Add electron-scale heat flux obtained by GENE (FT, adiabatic ions)

GENE-3D only simulates transport on ion-scales

 \Rightarrow What about ETGs?

- ⇒ Add electron-scale heat flux obtained by GENE (FT, adiabatic ions)
- Core: almost 1:1 between ion and electron scales
- Outer region: only small impact

Wendelstein 7-X

GENE-3D only simulates transport on ion-scales

⇒ Add electron-scale heat flux obtained by GENE (FT, adiabatic ions)

 Core: almost 1:1 between ion and electron scales

 \Rightarrow What about ETGs?

• Outer region: only small impact

\Rightarrow ETGs contribute significantly in the core, in agreement with [Weir et al., 2021]

• Taking into account electron scales important for flux-matching and profile prediction of W7-X

Analysis of ETG transport

Several factors could play a role:

• Large $\tau = T_e/T_i$ is known to stabilise ETG

Several factors could play a role:

• Large $\tau = T_e/T_i$ is known to stabilise ETG => trend is opposite to observed ETG behaviour

Several factors could play a role:

• Large $\tau = T_e/T_i$ is known to stabilise ETG => trend is opposite to observed ETG behaviour

• Normalised Debye length

 $\hat{\lambda}_{De} = \sqrt{B_{ref}^2 / (4\pi c^2 m_e n_e(x))}$ has stabilising effect

Several factors could play a role:

• Large $\tau = T_e/T_i$ is known to stabilise ETG => trend is opposite to observed ETG behaviour

 $\hat{\lambda}_{De} = \sqrt{B_{ref}^2 / (4\pi c^2 m_e n_e(x))}$ has stabilising effect

=> Simulations without Debye shielding still show weak ETGs in the outer region

• Gradient ratio $\eta_e = L_n/L_{T_e}$ is known to suppress ETG; has been proposed to explain weak ETG transport in outer region in [Plunk et al., 2019] Wendelste

• Gradient ratio $\eta_e = L_n/L_{T_e}$ is known to suppress ETG; has been proposed to explain weak ETG transport in outer region in [Plunk et al., 2019]

=> Simulations with $\frac{a}{L_n} = 0$ still show decreasing heat flux

- Gradient ratio $\eta_e = L_n/L_{T_e}$ is known to suppress ETG; has been proposed to explain weak ETG transport in outer region in [Plunk et al., 2019]
 - => Simulations with $\frac{a}{L_n} = 0$ still show decreasing heat flux

We argue that ETG is not stiff enough:

Wendelstein 7-X

Why is ETG weak in the outer region?

- Gradient ratio $\eta_e = L_n/L_{T_e}$ is known to suppress ETG; has been proposed to explain weak ETG transport in outer region in [Plunk et al., 2019]
 - => Simulations with $\frac{a}{L_n} = 0$ still show decreasing heat flux

We argue that ETG is not stiff enough:

- a/L_{T_e} increases, but e.g. T_e decreases as well
- Normalised electron heat flux (in Gyrobohm units) increases by one order of magnitude
- Gyrobohm scaling factor decreases by two orders
 => Product of the two (times area) will decrease overall

Gradient ratio η_e = L_n/L_{T_e} is known to suppress ETG; has been proposed to explain weak ETG transport in outer region in [Plunk et al., 2019]
 => Simulations with ^a/_{L_n} = 0 still show decreasing heat flux

We argue that ETG is not stiff enough:

- a/L_{T_e} increases, but e.g. T_e decreases as well
- Normalised electron heat flux (in Gyrobohm units) increases by one order of magnitude
- Gyrobohm scaling factor decreases by two orders
 => Product of the two (times area) will decrease overall
 - Impact of geometry on ETG stiffness will be investigated in the future

We still don't match power balance...

• Experimental profiles come with error bars; stiff transport implies high chance of not matching power balance with nominal profiles right away

We still don't match power balance...

- Experimental profiles come with error bars; stiff transport implies high chance of not matching power balance with nominal profiles right away
- ⇒Use transport code (e.g. TANGO) coupled with gyrokinetic code (ideally global code) to vary the profiles within experimental error bars
- Ongoing work at IPP Garching, but very expensive (if done with GENE-3D)

We still don't match power balance...

- Experimental profiles come with error bars; stiff transport implies high chance of not matching power balance with nominal profiles right away
- ⇒Use transport code (e.g. TANGO) coupled with gyrokinetic code (ideally global code) to vary the profiles within experimental error bars
- Ongoing work at IPP Garching, but very expensive (if done with GENE-3D)
- Even without flux-matching, one can argue about the role of electron-induced turbulence

Gas puff: Assume $\Gamma_{tot} = 0$ in the core • 0.25-**GENE-3D** particle transport • 0.20is too positive [[10¹⁹/(m² s)] - 0.10 -0.05-Γ_{e, neo} $\Gamma_{e, anom}$ 0.00-0.300 0.325 0.350 0.375 0.400 0.425 0.450 0.475 0.500 $ho_{
m tor}$

 \Rightarrow Both increase ∇T_e -TEM and ETG drive as well

 \Rightarrow Both increase ∇T_e -TEM and ETG drive as well

⇒Even without matching power balance, electron-induced turbulence most likely a key player in core transport

• First-ever global simulation of experimental discharge of W7-X with kinetic electrons

- First-ever global simulation of experimental discharge of W7-X with kinetic electrons
- Although not matching experimental fluxes: ∇T_e-driven TEMs and ETGs potential candidate to explain electron core transport

- First-ever global simulation of experimental discharge of W7-X with kinetic electrons
- Although not matching experimental fluxes: ∇T_e-driven TEMs and ETGs potential candidate to explain electron core transport

 \Rightarrow Retaining finite $\frac{a}{L_{T_e}}$ is key

- First-ever global simulation of experimental discharge of W7-X with kinetic electrons
- Although not matching experimental fluxes: ∇T_e-driven TEMs and ETGs potential candidate to explain electron core transport

 \Rightarrow Retaining finite $\frac{a}{L_{T_e}}$ is key

• Take it with a grain of salt: TANGO runs of multiple experimental discharges ongoing (D. Fernando), which will give further insight