INSTITUTE OF PLASMA PHYSICS OF THE CZECH ACADEMY OF SCIENCES

Latest results from sheath kinetic modelling

D. Tskhakaya and TSVV3 team

Institute of Plasma Physics of the CAS, Prague, Czech Republic

High density sheath

one ion species (reminder)

with impurity: Ar^{+i<5}

with D+T

> Sheath with the magnetic field parallel to the wall surface

> W sputtering study

Position of the magnetized sheath edge

D. Tskhakaya | PSI | Princeton | 21.06.18

Analytic model

4/14

$$M_{\parallel} = 1 + \chi - \sqrt{\chi^2 + 2\chi}$$

P. Macha (IPP CAS) and GBS team is implementing and will test this BC into the GBS (2024)

Implementation of collisional sheath in SOLPS-ITER

[D. Moulton, ISFN DivSOL, 2021]

SOLPS-ITER simulation show no changes in particle flux, but increasing of density in the divertor plasma.

Simulation results

On electron-ion friction force at the SE

Electron and ion (D^+) VDFs at the high collisional sheath edge for different current regimes ($I = J/J_{sat}$) from the PIC model

$$R_{\parallel}^{ei} = -m\upsilon_{ei}\left(V_{\parallel}^{i} - V_{\parallel}^{e}\right) \Rightarrow -m\upsilon_{ei}V_{\parallel}^{i}$$

Electron-ion friction at the sheath edge is **independent** of the current regime

COMPASS INSTITUTE OF PLASMA PHYSICS ASCR

High density sheath with impurity

Strong coupling between the main and impurity ions

TSVV-3 meeting 10.1.24

COMPASS INSTITUTE OF PLASMA PHYSICS ASCR

Multiple main ions: JET

COMPASS INSTITUTE OF PLASMA PHYSICS ASCR

Multiple main ions: high density case

Density profiles from kinetic modelling of the JET SOL

A guess for a high density case

$$M_{\parallel} = c_D M_{\parallel}^D + c_T M_{\parallel}^T + \dots$$

$$M_{\parallel}^{i} = 1 + \chi_{i} - \sqrt{\chi_{i}^{2} + 2\chi_{i}}$$

Sheath with a parallel magnetic field

The sheath is **positively charged** wall repels positive ions?

Different cases are running with and without neutrals, with different plasma radial profiles

Sheath with a parallel magnetic field: analysis

Open questions

- Is such a sheath stable at all (2D study is required)? •
- What is the actual critical angle α_{crit} , when negative sheath turns into the positive one? • Previous study (e.g. [*Tskhakaya JNM 2003*]) indicates that $\alpha_{crit} < (m_e/M_i)^{1/2} \sim 0.5^{\circ}$