Boundary simulations in realistic wall geometry with the GBS code
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m Abstract

=Increased divertor closure has been observed to
induce higher divertor neutral pressures thereby
facilitating access to detached regimes e.g. in
TCV [1] and numerical studies e.g. SOLPS-

ITER [2].

=A numerical scheme incorporating a flexible first
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wall geometry is implemented in the GBS code 0.0
for boundary plasma simulation.
=The implementation, targeting the plasma mod- —0.2
ule of GBS, is performed using single-block
structured curvilinear finite differences. —0.4
=Relevant plasma profiles can be retrieved using :8:8
a synthetic test case. Simulations of a reduced -1.0
size TCV domain in SILO baffled configuration 100 200
are presented. X[psol
= Modeling with GBS
The Global Braginskii Solver (GBS) [3, 4]

=Evolves the two-fluid (electron-ion) dri
reduced Braginskii equations including
electromagnetic perturbations in 3D
=Provides a kinetic neutral solver based
on the method of characteristics
=Supports arbitrary magnetic geometries
=Performs spatial discretization with 4th
order central finite differences
=Advances time with fixed/variables ex-
plicit RK time-steppers
=Solves electrostatic (Poisson) and elec-
tromagnetic (Ampére) perturbations itera-
tively using PETSc’ GMRES
=Scales to more than 10* CPUs (pure
MPI), has been GPU ported.
In particular, spatial discretization
=relies on staggered Cartesian grids,
=splits even (e.g. density) and odd (e.g.
velocities) moments on separate grids to
avoid odd-even decoupling.
The code is extended to support curvilin-
ear finite differences allowing a more gen-
eral class of grids,
= Discretize and evolve GBS eguations in
a “computational space” § € Q = (0, 1)%.
=Find amap X(§) = (x,y) : O » Q c R?
that yields the desired first wall geom-
etry 0Q. (x, y) denote the radial R, resp.
vertical Z, directions.
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Colored blocks O indicate modifications due to the
new geometry.

Spatial operators are expanded in terms of
§ coordinates, e.g.

C(f)=0,f=9,80f,
of = Vf = +/G,.9%0gf.

m Synthetic benchmarks

Verify RHS implementation on a grid with

rectangular boundary. Let X,(§) = [L,, Ly]{

the original Cartesian map.
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8(8) = X,(§) - X,(0.5)],
B(¢) = atan2(X,(€) - X,(0.5)).

Figure 1: The resulting grid and relative
difference in Jacobian &/ indicates the volu-
metric contraction/expansion of grid cells.
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Figure 2: Excellent agreement is recovered between the Cartesian and curvilinear implementa-
tions. Here, electron pressure profiles are compared at the outboard midplane, high- and low-field
side targets.

m Baffled TCV configurations

The “Short In Long Out” (SILO) baffled TCV configuration with reduced toroidal mag-

netic field (B, = 0.97) is considered. The domain is scaled to 1/3 of its original size

to lower computational cost. Boundary definition is provided as an ordered point set P.

Grid generation employs spline-based meshing techniques based on [5, 6],

1. Four C%(R?) splines are fitted to P defining o0,

2. A spline map is computed by an elliptic solver & optimized for cell size homogeneity,

3. Sample the resulting map (and derivatives) on two staggered structured Cartesian
meshes in Q.
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Figure 3: TCV shot #70182 at t = 15 with SILO baffles and corresponding grids, labelled Rough
(left) and Accurate (right).

m Effects of baffling
A set of 7 simulations are performed and labelled <grid><equil.><suffix>, e.g. “CXb",
where grid=[CRA] (Cartesian, also see Fig 3), <equil.>=[XL] the magnetic equilibrium
(X21 configuration #78172 [7] and Long-leg configuration #76142) and <suffix> to dif-
ferentiate similar configurations. The following observations hold,
=Taking into account reduced TCV size, the LCFS and baffle tip are ~ 2 cm apart,
=The baffles shadow the plasma in the divertor, resulting in the shrinking of radial pro-
files,
=Enhanced flows towards the baffle surface and high electrostatic potential are ob-
served resulting from Bohm boundary conditions vﬁ‘; =c,, ¢°¢=3T,
=The larger flows to the baffle could explain the decrease in turbulence intensity near
the baffle surface, the E xB shear near the baffle tips is unaffected by the Bohm bound-
ary conditions.
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Figure 4: Normalized density fluctuations U"/ilxyn across the simulation set. The dashed line /
+ symbol indicates the last flux surface connecting both targets.

m Future work
The first GBS simulations including plasma dynamics in realistic wall geometry have
been performed for a baffled TCV configuration. Future work will focus on
=Enabling curvilinear geometry support for neutrals,
=Optimizing the spline map for other properties than homogeneity: local alignment to
flux surfaces, contraction/expansion depending on magnetic geometry region,

=Considering alternative approaches to handle geometries that do not map well to unit
square, e.g., immersed boundary conditions [8], multi-block meshes.
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1. Four C%(R?) splines are fitted to P defining 9Q,
2. A spline map is computed by an elliptic solver & optimized for cell size homogeneity,
3. Sample the resulting map (and derivatives) on two staggered structured Cartesian

meshes in 0. Use curvilinear coordinates
R \ Find transformation (R, Z) as
__— functions of (&,
% «— (& X)
Computational coordinates in unit
RS square: (¢, X) € (0,1)2
0e oo v oo Discretization of (&, X) is still
Figure 3: TCV shot #70182 at t = 1s with SILO baffles and corresponding grids, labelled Rough .
(left) and Accurate (right). StrUCtU red / CarteS|an
Operators expanded in terms of
Spatial operators are expanded in terms of metric coefficients of the
§ coordinates, e.g. transformation

C(f)=9,f = 0,80,
of =h-Vf =2/g,.9%f.



Coordinate map can be

defined analytically \

Good comparison between
reference version and
curvilinear version when
keeping a rectangular wall

geometry (expect same \

profiles)

(also verified through unit tests)

m Synthetic benchmarks

Verify RHS implementation on a grid with
rectangular boundary. Let X (§) = [L,, Ly]f

the original Cartesian map.
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where L, = 300, Ly = 400, A, = 30, 6, = 75,
w, = 20, and 6 and 6 defined as

6({) = |X0(€) - X0(05)|r
8(€) = atan2(X(€) - X,(0.5)).
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Figure 1: The resulting grid and relative
difference in Jacobian 6/ indicates the volu-
metric contraction/expansion of grid cells.
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Figure 2: Excellent agreement is recovered between the Cartesian and curvilinear implementa-
tions. Here, electron pressure profiles are compared at the outboard midplane, high- and low-field

side targets.




Two SILO-baffled 1/3rd TCV curvilinear grid

configurations \

Two magnetic configurations: X21 and “long leg” X-
point (#76142).

Runs (electrostatic).
* 4 curvilinear configurations
e 2 comparison domains in reference Cart. GBS



Overall observations (qualitative)

* In general, turbulence above LFS baffle seems
slightly weaker than w/o baffle

* Electrostatic potential rises at baffle tip (¢ = ATe).

Does a barrier form? ExB shear (causing lower
turbulence levels) ?

« Parallel flows in presence of baffles?
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In general, curvilinear sims have

. slightly lower turbulence levels at
outer midplane (LHS, above baffle)
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In general, curvilinear sims have

slightly lower turbulence levels at
outer midplane (LHS, above baffle)
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(Electrostatic potential does shift, but ExB shear doesn’t

increase significantly in baffled case)
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Normalized fluctuations levels drop when reaching
the “first wall flux surface” &

On/Nyyzt (upstream)
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