

TSVV3 30/04/25

Progress on the analysis and modelling of the long-leg high and low density, L-mode plasmas

D. Mancini

This work has been carried out within the framework of the EUROfusion Consortium, partially funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 – EUROfusion). The Swiss contribution to this work has been funded by the Swiss State Secretariat for Education, Research and Innovation (SERI). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union, the European Commission or SERI. Neither the European Union nor the European Commission nor SERI can be held responsible for them.

GBS validation in low and high density scenario in TCV-X23 configuration

Goal : validate turbulent codes (GBS, SOLEDGE3X, GRILLIX, FELTOR, ...) against long-leg case

1.0

0.8

0.2

0.0

0

[D.S.Oliveira et al, 2022, Nucl. Fusion 62 096001]

0.6 س₆₁0

- Explore power-exhaust capabilities of long leg
- Low $B_{+} \rightarrow$ easier to simulate
- Measurements of fluctuations \rightarrow GPI, RDPA

Validation procedure:

- 1. Develop and characterize desired scenario
- 2. Run turbulent simulations with exp. reference (n $_{sep}$, T $_{e,sep}$, P $_{rad}$)
- Quantify difference between simulation 3. and measurements with chosen metric

^(Ω) From density ramps (2023) to flat-tops for high quality dataset **ΕΡ**FL

- Density ramps up to saturation of ion flux, with CIII front movement from target
- Two density windows chosen for simulations and reference for flat-top shots (2024)

- Introduction on TCV-X23 experiment
- Analysis performed on new TCVdb.py:
 - Langmuir Probes measurements, outer and inner target
 - RDPA measurements, divertor profiles
 - Heat flux estimates from IR
- What is next:
 - Radiation profiles: Bolometry, Mantis and DSS
 - Fluctuations analysis: GPI, DBS
- Quick update on simulations
- Conclusions

Page 4

New database format TCVdb created by D.S. Oliveira

- Easy to read and manipulate database with specific python routines in development
- First comparison of FWD field TCV-X23, with TCV-X21 as reference
- TS measurements show high n and lower T_p in SOL for high density X23, as desired

Langmuir probes profiles - Outer target - n, T_e

EPFL

LES

- Higher target density for X23 high density, in all SOL
- Lower target temperature in X23 high density \rightarrow ~7 eV at target, broad peak

C Langmuir probes profiles - Inner target

- More difficult measurements due to probes position \rightarrow big error bars
- Even lower T_{p} compared to outer target in high density X23 ~5 eV

Langmuir probes profiles - Plasma potential

• Plasma potential lowers with $T_{\rho} \rightarrow Strong peak decrease at inner target$

Langmuir probes profiles - Outer target - j₁₁, std(j₁₁)

- Ongoing analysis for high density X21
- Smaller peak in X23, broader std → Fluctuations pushed toward far SOL?

RDPA divertor profiles - density and temperature

- Strong temperature decrease and density increase for high-density case
- T_e < 7eV at high density target
 → compatible with CIII front

RDPA divertor profiles - jsat and std(jsat)

- Lower J_{sat} peak in high density
- Broader fluctuations profile in the far SOL increasing density

RDPA divertor profiles - V_{pl} Forward and Reversed

- Lower V_{pl} with high density in both cases
- Opposite vertical electric field at the target for opposite B_{tor}, same direction upstream

RDPA divertor profiles - Mach number

- High M values in far SOL both in low and high density
- Higher M values for higher density
- No reversal of M with field direction close to the target
 → need to be investigated

RDPA divertor profiles - Electron pressure

-0.35

-0.40

-0.45

-0.50

-0.55

-0.25

-0.30

Pressure loss stronger in Forward • field direction \rightarrow compatible with heat flux loss

O Infrared thermography - outer target

- Strong decrease of heat flux from low to high density X23 → observed in SOLEDGE3X
- Very low heat flux for X23 high density → No good estimate of SOL width?

λ _q [mm]	S [mm]
5.5 ± 0.2	3.4 ± 0.3
8.4 ± 0.2	1.4 ± 0.2
20.0 ± 0.8	2.9 ± 0.3

O Infrared thermography - outer target

- Weaker heat flux decrease in Rev field direction, still clear
- Already observed in previous similar discharges (D. Galassi et al, in preparation)

- Introduction on TCV-X23 experiment
- Analysis performed on new TCVdb.py:
 - Langmuir Probes measurements, outer and inner target
 - RDPA measurements, divertor profiles
 - Heat flux estimates from IR
- What is next:
 - Radiation profiles: Bolometry, Mantis and DSS
 - Fluctuations analysis: GPI, DBS
- Quick update on simulations
- Conclusions

- Both Mantis and DSS show peak of C emissivity moving away from the target with higher density → expected from low T_a
- DSS gives info about molecular dynamics from D lines ratio → hard to perform analysis, will see where it goes

CIII front Low density Low density + baffles ligh density + baffles Θ 3.5 4.5 5 5.5 6.5 FIR n [m-3] ×10¹⁹

Page 18

Page 19

EPFL

Outer leg Gas Puff Imaging

- On-going characterization of differences compared to un-baffled shots
- Analysis will focus on turbulence velocity profiles

Page 20

GBS turbulent study for detachment with long leg

For each configuration:

- Half TCV size \rightarrow lost on Marconi
- 2 simulations, low and high density (GP D₂)
- e⁻, D⁺ and D₂⁺ dynamics
 with D and D₂ interactions

Shape	B _t direction
TCV-X21	FF*
TCV-X21	RF**
TCV-X23	FF

*D. Mancini et al, 2024, Nucl. Fusion 64 016012 ** D.Mancini et al, 2024, PSI poster

EPFL

Going in the right direction, waiting for plasma density build up

Page 21

Structure for new database of TCV-X23 measurements in place, on-going work to clean it and fill it with all diagnostics available

- Present: TS, LPs, RDPA, IR, DSS, Barometer
- Missing: Bolometers, Mantis, GPI, DBS

Analysis of TS, LPs, RDPA and IR shows:

- Obtained scenario at higher density compared to TCV-X21, in both field directions
- Increase in density associated with decrease in target T_e and heat flux, coherent with a decrease of electron pressure in the divertor volume
- Heat flux decrease stronger in Forward field direction
- Decrease of T_e associated with lower V_{pl} and lower electric field close to target \rightarrow sign changes with field direction
- Higher density associated with broader current fluctuations

Structure for new database of TCV-X23 measurements in place, on-going work to clean it and fill it with all diagnostics available

- Present: TS, LPs, RDPA, IR, DSS, Barometer
- Missing: Bolometers, Mantis, GPI, DBS

Next:

- Include radiated power analysis to account for lower target heat flux
- Include Mantis and DSS analysis to gain knowledge about C and D₂ dynamics
- Characterize differences between baffled and un-baffled experiments
- Analyze GPI measurements to get fluctuation velocity profiles

No changes in the OMP profile through puffing

Increased puff simulations show same density profile in low and high density TCV-X23:

- Density shoulder "between" the low and high density TCV-X21
- λ_{p} higher in TCV-X23

EPFL

200

100

[⁰⁵0]Z

-200

-400

300 400

R[Qeal

High D₂ density even with lower density

```
EPFL
```

Higher D penetration due to higher D_2 dissociation

Page 25

5

OSP

Ion fluxes at both target decreases increasing puffing

Strong decrease of Γ_{II} at outer target \rightarrow not observed in TCV-X21 simulations

Flux decrease only close to target

Strong momentum loss

Ion flux profile wider at outer target

EPFL

At both targets, ion flux decrease with increasing puffing:

- At ISP same shape for TCV-X21 and TCV-X23 \rightarrow detached in similar way
- At OSP broader peak in TCV-X23 even at low density

High positive fluctuations killed in X23

Ó

Page 28

High positive fluctuations slower in TCV-X23

- Slower filaments in X23 from OMP to X-point
- Fast filaments in low density below X-point ($v_r < 0$)
- Very slow filaments for high D_2 density in divertor \rightarrow Have to verify detection

Five species (D^+ , D_2^+ , e^- , D, D_2) and minimal interactions set **EPFL**

Detachment studied through simulations of tokamak plasma and neutrals, modelling:

- Ionization (atomic + MAI)
- Recombination (EIR + MAR)
- Charge exchange
- e-n collisions

Plasma model: drift-reduced Braginskii equations

Plasma described by Braginskii equations with neutrals interactions We evolve density, parallel velocity and temperatures of all charged species. Example:

$$\frac{\partial n_e}{\partial t} = -\nabla \cdot \left[n_e (\mathbf{b} v_{\parallel e} + \mathbf{v}_{E \times B} + \mathbf{v}_{de}) \right] + \int (I_{e,D} + I_{e,D_2}) d\mathbf{v}$$

$$I_{e,D} = n_D \langle v\sigma_{e,D}^{el} \rangle (n_e \Phi_{[\mathbf{v}_D, T_{e,D}^{el}]} - f_e) + n_D \langle v\sigma_{e,D}^{iz} \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle f_e \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle f_e \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle f_e \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle f_e \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle f_e \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle f_e \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle f_e \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle f_e \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle f_e \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle f_e \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle f_e \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle f_e \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle f_e \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle f_e \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle f_e \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle f_e \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle f_e \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_D + \langle v\sigma_{e,D^+}^{rec} \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - n_D + \langle v\sigma_{e,D^+} \rangle (2n_e \Phi_{[\mathbf{v}_D, T_D^{iz}]} - f_e) - n_$$

Where : $\Phi_{[\mathbf{v},T]}$ is a Maxwellian centered at velocity **v** , with temperature T , distribution of emitted electrons

With:

- quasi neutrality $n_{D^+} = n_e n_{D_2^+}$
- Zdhanov closure $\begin{bmatrix} q_{\parallel,\alpha} \\ R_{\parallel,\alpha} \end{bmatrix} = \sum_{\alpha} Z_{\alpha\beta} \begin{bmatrix} \nabla_{\parallel} T_{\beta} \\ v_{\parallel,\beta} v_{\parallel,CM} \end{bmatrix}$ with $n_{D_2^+} << n_{D^+}$
- Pre-sheath boundary conditions

[A. Coroado and P. Ricci 2022 Nucl. Fusion 62]