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Unknown parameters needs calibration

* Perpendicular turbulent transport not resolved Iin
SOLPS-ITER

* Use of ad-hoc diffusion coefficients (reactor,
operation and space dependent)

* Estimation based on experimental data
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Model calibration through optimization

* Cost function: match to experimental data

——Experiment
= Simulation
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J(e,q)=ﬁjwq (ﬁ(q—ﬂ)z)dﬂ n

Q 3

* PDE-constrained optimization problem
min J(6,q)
q

s.t. B(6,q) =0 402 02 406
6 unknown parameters, e.qg. D, BC, ...

—> Efficiently solved with gradient-based methods



An optimization framework in SOLPS-ITER

Evaluate J(6%),
Evaluate VJ(6%)

Update 6%+ = gk — f (VJ(G"))

Repeat until tolerance met

S\

Gradient computation using Algorithmic Differentiation?
Coupling to optimization tool PETSc/TAQO?

-> Calibration of complex, non-linear models & large parameter
sets now possible!

[1] Carli et al 2023 JCP 491 112403 [2] Carli et al 2022 CPP 62 202100184



k-model for the radial turbulent transport3-4

New model equation for turbulent kinetic energy k...
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k-model for the radial turbulent transport3-4

New model equation for turbulent kinetic energy k...
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First calibration on real data: TCV-X21°

* Use radial profiles of:
o Ng, Te at OMP
o Jsatr Te q) at oT
O jSClt’ Te at IT

Research questions
1. How does k-model compare to standard models?

2. Is the k-model better at predictions?
3. How do they compare in a density scan?

[5] Oliveira and Body et al 2022 NF 62 096001 DOI 10.5281/zenodo.10841179



Case setup

* SOLPS-ITER wide-grid version

* Forward field

* Pure D plasma

* Drifts ON

e Advanced Fluid Neutral (AFN) models®’
* Core BC: fixed density + P,;,,~ 125 kW
* Recycling 0.99

* Relatively coarse grid 60x24

[6] Horsten et al 2017 NF 57 116043 [7] Van Uytven et al 2022 NF 62 086023 10



Results

1. How does k-model compare to standard models?
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1.1 — Estimation with standard model

* Unknown parameters 6 B, rof n
o Reference: 8 = (ne,corerD L Xe, 1 Xi, l) B, (r,0)

o With ballooning 6 = (ne,core, Dl,)(e,l,)(i,l,n)
> With ballooning and pinch velocity 8 = (n¢,cores D1s Xe 1) Xi T V1 )
Note: estimation with ballooning gets exponent n = 0, i.e. no ballooning
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Good agreement at OT, small differences in models

Te OT (eV)
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e | FS-LP . . .
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10|
/\—\a * j.qt Profile and peak captured, but shifted outward

5l
gy also shifted, inner/outer decay lengths captured

0

-1 -0.5 0 0.5 1 1.5 2 2.5

. 2
Isat OT (KA/m?) q, OT (MW/m?)

407 57
LFS-LP —=
—ref-
| m—yith ball :
30 W!th ball & =
with ball & v with ball & v
20+
10

RY - R;‘ , (cm)



Good agreement at IT, some differences in models

T, peak well captured, (far) SOL profile somewhat captured

Jsat Profile and peak captured, but slightly shifted inward
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1.2 — Estimation with k-model

k-model prone to instabilities + use of drifts = very unstable!
— Adapted BC at PFR enforcing zero-gradient, not leakage
-2 Quite smaller step-length in line-search

Several parameters inside k-model:

e k BC atcore k.,
* Parallel transport of k C,, 4

Xe ExB — Ch,eDE

_ * Dissipation of k C , C
Xi,EXB — Ch,iDEXB p O'||,2,COT'€ O'||,2,SOL

: =C,D
NiExB n-EXB Kept fixed at 0.1, needs additional
o D’C — CDKDEXB turbulence data from experiment or
turbulence codes
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Comparison with standard model on ‘similar’ setup (i.e. ballooning included)

Note n, and T, at separatrix are the same as consequence of optimization but no
constraint is active there
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k-model able to reproduce experimental data at OT
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* Further underestimation of T, likely linked to
small increase in j;, and g

« Same profile shapes obtained as standard model
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k-model able to reproduce experimental data at IT

201

No significant discrepancies between two models at IT
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D, with ‘small’ ballooning profile, shear suppression at
separatrix

e Standard model & k-model show that no/negligible ballooning is required to match data
* How can they reproduce results in similar way when D, is so different?

1. They have same separatrix n, and T,

D, 2. Larger role of drifts rather than turbulent transport?
m /s
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Results

2.

Is the k-model better at predictions?
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Predictions on reversed field

* n, BC at core adjusted as reverse field n, ., is lower (need to setup feedback scheme)

* Kk BC at core kept constant (does it make sense??)

* Density decay length not fully captured by both models
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Good T, and worse j.,; prediction at OT

Te OT (eV)

20 T, peak captured, k-model seems to better predict rise and fall
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* Jj.qt Profile similar to forward field in simulations, k-model
captures peak, both shifted left
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q, fall-off not that good, but peak captured
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Very good predictions at IT

* T, well captured, also rise and fall-off profiles
* Very good match with j.,+, peak shifted right
 Small discrepancies between two models at IT (again, small upstream difference?)
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Results

3. How do they compare in a density scan?
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Maximum j,,; and q; at OT

* j.4t rollover present, anticipated in k-model
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Decay lengths at OMP (Reciprocating probe)
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Decay lengths at divertor entrance (Thomson Scatt)
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Decay length at target (infrared camera)

Fitting curve
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Trying to understand the differences...

Distance of stagnation point from OT (m)
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Trying to understand the differences...

* Larger D, at separatrix for k-model
- Somewhat larger particle outflux at same density
- somewhat larger total particle flux at outer divertor entrance

D 21_-1
D, OMP (m?s) T\ cep (107°87)
37 i | 3.5
I I [ ] v
I I
Te,sep 2.5 i ® v °
i ! v
I | v 2.5
| o I
2 v 2
® v
o'V | 151
1.5} oV 1
W |
i |
| . A4 | | L 05|
05 0 05 1 15 2 25 0.5 1 15 2 0.5
RY-RY (cm) (10"°m)



Trying to understand the differences...

Power balance (% of P__ ) * radiation increases & power to
80 target decreases
tr
_ragd * Power to north wall and PFR
60 r —==wall roughly constant
s Of
40 However, the k-model shows
TS = - - —’__,._—_j,:..:- * Slightly smaller power to targets
20 r = = * Slightly larger radiation
£ std model ¢ Near zero power to PFR due to
0 =~  _ o = = = = = — = = g-model zero-gradient BC there, this
0.5 1 15 5 power difference seems to be
(10"°m3) directed to north wall
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Outline

* Conclusions and next steps
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First application of model calibration framework in SOLPS-ITER on TCV-X21
1. How does k-model compare to standard models? - Very similar results
2. Is the k-model better at predictions? = Not better, not worse (so far)

Planned next steps:
* Finish up last optimizations with radial profiles of diffusion coefficients

* Predictions: use higher density TCV-X21 data (waiting for Diego’s paper...) to
validate and better understand density scan results

* Kinetic cases with Carbon sputtering included

Future steps (not planned by Stefano)

* Bayesian estimation: can tell if model 1 is actually better than 2 and get
uncertainty estimates on the calibrated parameters

33
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