KU LEUVEN

TCV-X21 modeling with the SOLPS-ITER wide-grid version

S. Carli, R. Coosemans, W. Dekeyser, C. Colandrea*, H. Reimerdes* KU Leuven, Department of Mechanical Engineering *EPFL, Lausanne, Switzerland

Research Foundation Flanders Opening new horizons

Outline

- Intro
- Results
- Conclusions and next steps

Unknown parameters needs calibration

- Perpendicular turbulent transport not resolved in SOLPS-ITER
- Use of ad-hoc diffusion coefficients (reactor, operation and space dependent)
- Estimation based on experimental data

Model calibration through optimization

Cost function: match to experimental data

$$\mathcal{J}(\boldsymbol{\theta}, \boldsymbol{q}) = \frac{1}{\Omega} \int_{\Omega} \omega_{q} \left(\frac{1}{\overline{\mathcal{D}}^{2}} (\boldsymbol{q} - \mathcal{D})^{2} \right) \mathrm{d}\Omega$$

• PDE-constrained optimization problem $\min_{\theta,q} \mathcal{J}(\theta, q)$ $s.t. \mathcal{B}(\theta, q) = 0$

 θ unknown parameters, e.g. D_{\perp} , BC, ...

 \rightarrow Efficiently solved with gradient-based methods

An optimization framework in SOLPS-ITER

- 1. Evaluate $\mathcal{J}(\theta^k)$,
- 2. Evaluate $\nabla \mathcal{J}(\theta^k)$
- 3. Update $\theta^{k+1} = \theta^k f(\nabla \mathcal{J}(\theta^k))$
- 4. Repeat until tolerance met

Gradient computation using Algorithmic Differentiation¹ Coupling to optimization tool PETSc/TAO²

→ Calibration of complex, non-linear models & large parameter sets now possible!

[1] Carli et al 2023 JCP 491 112403

κ -model for the radial turbulent transport^{3,4}

New model equation for turbulent kinetic energy κ ...

$$\frac{\partial n_i \kappa}{\partial t} + \nabla \cdot \left(\Gamma \kappa - D_{\kappa} \nabla \kappa \right) = S_{\kappa, prod} - S_{\kappa, diss}$$

..and closure for anomalous transport coefficient(s)

$$D_{E \times B} = C_d \frac{\kappa/m}{\sqrt{\kappa/m}/\rho_L + C_S |S_{mean}|}$$

κ -model for the radial turbulent transport^{3,4}

New model equation for turbulent kinetic energy κ ...

$$\frac{\partial n_i \kappa}{\partial t} + \nabla \cdot \left(\Gamma \kappa - D_{\kappa} \nabla \kappa \right) = S_{\kappa, prod} - S_{\kappa, diss}$$

..and closure for anomalous transport coefficient(s)

$$D_{E \times B} = C_{d} \frac{\kappa/m}{\sqrt{\kappa/m}/\rho_{L} + C_{S}|S_{mean}|}$$

$$\chi_{e,E \times B} = C_{h,e}D_{E \times B}$$

$$\chi_{i,E \times B} = C_{h,i}D_{E \times B}$$
[3] Coosemans *et al* 2022 *CPP* e202100193
[4] Dekeyser *et al*

Outline

• Intro

- Results
- Conclusions and next steps

First calibration on real data: TCV-X21⁵

- Use radial profiles of:
 - \circ n_e , T_e at OMP
 - $\circ j_{sat}, T_e, q_{\parallel} \text{ at OT}$
 - \circ *j*_{sat}, *T*_e at IT

Research questions

- **1.** How does κ -model compare to standard models?
- **2.** Is the κ -model better at *predictions*?
- 3. How do they compare in a density scan?

Case setup

- SOLPS-ITER wide-grid version
- Forward field
- Pure D plasma
- Drifts ON
- Advanced Fluid Neutral (AFN) models^{6,7}
- Core BC: <u>fixed density</u> + $P_{ohm} \sim 125 \text{ kW}$
- Recycling 0.99
- Relatively coarse grid 60×24

1. How does κ -model compare to standard models?

- 2. Is the κ -model better at *predictions*?
- 3. How do they compare in a density scan?

1.1 – Estimation with standard model

- Unknown parameters θ
 - Reference: $\theta = (n_{e,core}, D_{\perp}, \chi_{e,\perp}, \chi_{i,\perp})$
 - With ballooning $\theta = (n_{e,core}, D_{\perp}, \chi_{e,\perp}, \chi_{i,\perp}, n)$
 - With ballooning and pinch velocity $\theta = (n_{e,core}, D_{\perp}, \chi_{e,\perp}, \chi_{i,\perp}, n, v_{\perp})$

<u>Note:</u> estimation with ballooning gets exponent n = 0, i.e. no ballooning

Good agreement at OT, small differences in models

- Underestimation of T_e peak and gradient, far SOL profile less flat than exp.
- j_{sat} profile and peak captured, but shifted outward
- q_{\parallel} also shifted, inner/outer decay lengths captured

Good agreement at IT, some differences in models

- T_e peak well captured, (far) SOL profile somewhat captured
- *j_{sat}* profile and peak captured, but slightly shifted inward

1.2 – Estimation with κ -model

 κ -model prone to instabilities + use of drifts → very unstable! → Adapted BC at PFR enforcing zero-gradient, not leakage → Quite smaller step-length in line-search

Several parameters inside κ -model:

- $D_{E \times B} = C_d \frac{\kappa/m}{\kappa/m} |S_{mean}|$
- $\chi_{e,E\times B} = C_{h,e} D_{E\times B}$
- $\chi_{i,E\times B} = C_{h,i}D_{E\times B}$
- $\eta_{i,E\times B} = C_{\eta} D_{E\times B}$
- $D_{\kappa} = C_{D_{\kappa}} D_{E \times B}$

- κ BC at core κ_{core}
- Parallel transport of $\kappa C_{\sigma_{\parallel},1}$
- Dissipation of $\kappa C_{\sigma_{\parallel},2,core}, C_{\sigma_{\parallel},2,SOL}$

Kept fixed at 0.1, needs additional turbulence data from experiment or turbulence codes

1.2 – Estimation with κ -model

Comparison with standard model on 'similar' setup (i.e. ballooning included) Note n_e and T_e at separatrix are the same as consequence of optimization but no constraint is active there

16

κ -model able to reproduce experimental data at OT

- Further underestimation of T_e , likely linked to small increase in j_{sat} and q_{\parallel}
- Same profile shapes obtained as standard model and experiments

κ -model able to reproduce experimental data at IT

• No significant discrepancies between two models at IT

D_{\perp} with 'small' ballooning profile, shear suppression at separatrix

- Standard model & κ -model show that no/negligible ballooning is required to match data
- How can they reproduce results in similar way when D_{\perp} is so different?

Results

1. How does κ -model compare to standard models?

2. Is the κ -model better at *predictions*?

3. How do they compare in a density scan?

Predictions on reversed field

- n_e BC at core adjusted as reverse field $n_{e,sep}$ is lower (need to setup feedback scheme)
- *κ* BC at core kept constant (does it make sense??)
- Density decay length not fully captured by both models

Good T_e and worse j_{sat} prediction at OT

-0.5

-1

0

0.5

 $R^{u} - R^{u}_{sep}$ (cm)

1.5

2.5

2

- T_e peak captured, κ -model seems to better predict rise and fall
- j_{sat} profile similar to forward field in simulations, κ -model captures peak, both *shifted left*
- q_{\parallel} fall-off not that good, but peak captured
- Slight differences among models (small upstream difference?)

Very good predictions at IT

- T_e well captured, also rise and fall-off profiles
- Very good match with j_{sat} , peak shifted right
- Small discrepancies between two models at IT (again, small upstream difference?)

Results

1. How does κ -model compare to standard models?

2. Is the κ -model better at *predictions*?

3. How do they compare in a density scan?

Maximum j_{sat} and q_{\parallel} at OT

• j_{sat} rollover present, anticipated in κ -model

Decay lengths at OMP (Reciprocating probe)

Decay lengths at divertor entrance (Thomson Scatt)

Decay length at target (infrared camera)

• Fitting curve

$$q_{\parallel}(r) = \frac{q_0}{2} \exp\left[\left(\frac{S}{2\lambda_q}\right)^2 - \frac{r - r_0}{\lambda_q}\right] \operatorname{erfc}\left(\frac{S}{2\lambda_q} - \frac{r - r_0}{S}\right) + q_{bg}$$

Trying to understand the differences...

Trying to understand the differences...

- Larger D_{\perp} at separatrix for κ -model
- → Somewhat larger particle outflux at same density
- \rightarrow somewhat larger total particle flux at outer divertor entrance

Trying to understand the differences...

- radiation increases & power to target decreases
- Power to north wall and PFR roughly constant

However, the κ -model shows

- Slightly smaller power to targets
- Slightly larger radiation
- Near zero power to PFR due to zero-gradient BC there, this power difference seems to be directed to north wall

Outline

- Intro
- Results
- Conclusions and next steps

Conclusions and next steps

First application of model calibration framework in SOLPS-ITER on TCV-X21

- 1. How does κ -model compare to standard models? \rightarrow Very similar results
- 2. Is the κ -model better at *predictions*? \rightarrow Not better, not worse (so far)

Planned next steps:

- Finish up last optimizations with radial profiles of diffusion coefficients
- Predictions: use higher density TCV-X21 data (waiting for Diego's paper...) to validate and better understand density scan results
- Kinetic cases with Carbon sputtering included

Future steps (not planned by Stefano)

 Bayesian estimation: can tell if model 1 is actually better than 2 and get uncertainty estimates on the calibrated parameters