OF THE CZECH ACADEMY OF SCIENCES

Some updates on plasma boundary conditions at divertor and limiter surfaces

D. Tskhakaya

Institute of Plasma Physics of the CAS, Prague, Czech Republic

Boundary conditions at the divertors / limiters

BC for			2D			
	Single ion	Multi-ion	Collisional	Multi-fraction	Single ion	Multi-ion, -fraction / collisional
φ				•	•	
V _{i,}		•		•		
$\partial T/\partial x$, or q				•		•
Higher moments, vorticity			•			
vorticity						
BC exist and		\ [J. Loizu, PoP,]				

BC exist, but hard to implement (contains strong gradients, or code becomes unstable)

BC does not exist

Multi-fraction ~ time dependent ($\tau_{sheath} \ll \tau_{other}$)

1D Boundary conditions (classical)

Multi-positive-ion-component plasma sheath

$$\Gamma_{i} = n_{i} V_{i} , \quad \Gamma_{e} = I / e - \sum_{i=1}^{N} Z_{i} \Gamma_{i} , \quad \Delta \phi = \psi \frac{T_{e}}{e} \quad \psi = \ln \left[\sqrt{\frac{T_{e}}{2\pi m_{e}}} \frac{1}{\sum_{i=1}^{N} s_{i} Z_{i} V_{i}} - I / e n_{e} \right],$$

$$Q_{e} = (2 + \psi) \Gamma_{e} T_{e} , \quad Q_{i} = (2.5T_{i} + m_{i} V_{i}^{2} / 2) \Gamma_{i} , \quad i = 1, ..., N$$

 $\gamma_i \approx 1$

Magnetic sheath entrance

$$1 = T_e \sum_{i=1}^{N} \frac{s_i Z_i^2}{m_i V_i^2 - T_i}$$

$$V_{\parallel,i} = \sqrt{\left(T_i + Z_i \frac{\partial_x \ln n_e}{\partial_x \ln n_i} T_e\right) / m_i}$$

Single-ion plasma sheath

$$V_{\parallel,i} = C_{s,i} = \sqrt{\left(T_i + Z_i T_e\right)/m_i}$$

$$\psi = 2 \div 5$$

$$Q_e = (2 + \psi) \Gamma_e T_e$$

$$Q_i = (3T_i / T_e + Z_i / 2) \Gamma_i T_e$$

[Tskhakaya, JNM 2005]

EIPP CE COMPASS

On definition of the sheath edge

Sheath edge

Sheath edge is **not fully magnetized**

Profiles of parallel and normal Mach numbers at the AUG ID (Ar seeded case)

1D BC for second moments of the VDF

Boundary conditions for the collisional sheath

COMPASS-U

https://www.ipp.cas.cz/Compass_U/

- ✓ R= 0.894 m, a = 0.275 m
- ✓ High magnetic field (BT ≤ 5 T) and high-current (Ip ≤ 2MA)
- ✓ n_{sep} ~ 10²⁰ [m⁻³]
- ✓ High power fluxes in the divertor ($\lambda_q \sim 0.7 1$ mm)
- ✓ Metallic first wall and/or liquid metal divertor

Kinetic simulations of the COMPASS-U

✓ No seeded impurity

✓ Simulation "price": ~200 M CPU hours

Kinetic simulation: Mach numbers

Parallel Mach number profiles at the ID

[[]D. Tskhakaya, TSVV-4, 22.4.2025]

Kinetic simulations: results

	Sheath	Pot./T _e	n _{e,div} [10 ²¹ m ⁻³]	T _{e,div} [eV]	T _{i,div} [eV]	SHTF	
#5400	col. / col.	1.8 / 2.9	6.0 / 3.3	6.5 / 11.3	5.6 / 7.1	5.4 / 7.4	
Low n	clas./clas.	3.0 / <mark>3.4</mark>	0.32/0.15	4.8 / 13.7	5.1 / 6.6	21.6 / 14.5	
	Classical		Super-ther	mal electrons ¹		Collisional	
$\varphi pprox 0$	$0.5\ln(M_i/4\pi m)$	$(n_e) \sim 3$			1.8	< <i>\phi</i> < 3	
$rac{E_w^i}{F^iT_i}$	$\sim 6.5, \qquad \frac{E_w^{e+1}}{F^{i}T}$	$\frac{ F_i }{T_i}\Big _{cl} \sim \frac{E_w^i}{F^i T_i}\Big _{cl} +$	2≥8.5		$rac{E_w^i}{F^i T}$	$\left.\frac{1}{T_i}\right _{col.} \approx 2.5 + \varphi \sim 4.0$	0÷
$rac{E_w^i}{F^iT_i}$	$\approx 0.5 M_{\parallel}^{2} \left(1+\tau\right)$)+2.5+arphi au,	$ au = T_e / T_i$		$rac{E_w^{e+}}{F^i T}$	$\left.\frac{F_i}{T_i}\right _{col.} \sim 5 \div 8$	

[1] D. Tskhakaya, PPCF2017

Kinetic simulations: the potential

Profiles of the normalized potential at the ID

[D. Tskhakaya, TSVV-4, 22.4.2025]

Electron VDF at the divertor plate

[D. Tskhakaya, TSVV-4, 22.4.2025]

1D boundary conditions for the collisional sheath

Implemented in SOLPS-ITER and GBS

2D boundary conditions

Intuitive BC

 $V_{x,i} = C_{s,i} \sin \theta$

 $V_{\parallel,i} = C_{s,i} + V_{ExB} \cot \theta$

But if $\theta \ll 1$, $\cot \theta \gg 1$ we can have flow reversal at the wall

2D boundary conditions

[SOLPS]
$$V_{\parallel,i} = \max(C_{s,i}, \ 0.1C_{s,i} + V_{ExB} \cot \theta)$$

[GBS, J. Loizu, PoP, 2012]

$$V_{\parallel,i} = C_{s,i} \left(1 + H_n \cot \theta - \frac{1}{2} H_T \cot \theta \right) + V_{ExB} \cot \theta, \quad T_i \ll T_e$$

$$\begin{array}{ccc}
\bullet & \mathbf{B} & \theta \\
\mathbf{r} & & \mathbf{B} \\
\bullet & & \mathbf{F} \\
\bullet &$$

[BIT1, D. Tskhakaya, CPP, 2002]

$$V_{\parallel,i} = C_{s,i} \left(1 \pm \frac{\cot \theta}{1 + T_i / T_e} H_E \right) + V_{ExB} \cot \theta,$$

Directed against ExB

$$\frac{\partial_r T_e}{T_e} >> \frac{\partial_r n T_i}{n T_i}$$

Diamagnetic drift neglected

$$H_{n} = \frac{\rho_{i}\partial_{r}n}{2n}, \quad H_{T} = \frac{\rho_{i}\partial_{r}T_{e}}{2T_{e}}, \quad H_{E} = \left|\frac{\rho_{i}\partial_{r}E_{x}}{2E_{x}}\right|$$

For simplicity $H_k \ll 1$

$$C_{s,i} = \sqrt{(T_i + Z_i T_e)/m_i}, \quad i = 1,..., N$$

ETHUE CE PLASMA PARTIES ASCR

Proposed 2D boundary condition for V ||,i

$$H_E = \left| \frac{\rho_i \partial_r E_x}{2E_x} \right| \approx \frac{\rho_i}{2L_r}$$

$$V_{\parallel,i} = C_{s,i} \left(\sqrt{1 + \eta_i^2} \pm \eta_i \right) + V_{ExB} \cot \theta$$

The sign is "against ExB"

$$\eta_i = \frac{\rho_i}{2L_r} \frac{\cot\theta}{1 + T_i / T_e}$$

$$L_{r} = \left| \frac{\partial_{r} E_{x}}{E_{x}} \right| \sim L_{T_{e}} = \left| \frac{\partial_{r} T_{e}}{T_{e}} \right|$$

$$C_{s,i} = \sqrt{(T_i + Z_i T_e)/m_i}, \quad i = 1,..., N$$

Flow reversal can be avoided!

Diamagnetic drift is neglected

 $\frac{\partial_r T_e}{T_e} >> \frac{\partial_r n T_i}{n T_i}$

Boundary conditions for the multi-fraction sheath

BC for	1D	2D		
	Multi-fraction	Multi-fraction		
φ				
V _{i,}				
$\partial T / \partial x$, or q				
Higher moments, vorticity		•		

Descriptiion of the model

BIT1 – 1D3V electrostatic PIC + MC

ELM model^[1] Fixed connection length

[1] D. Tskhakaya, et al., J. Nucl. Mater. (2009)

- Validation of the divertor power loads^[2]
- Plasma sheath parameters^[3]
- ✓ W errosion rates^[4]
- Divertor temperatures^[5]

[2] R.A. Pitts, et al., Nucl. Fus., (2007)
[3] D. Tskhakaya, et al., J. Nucl. Mater., (2011)
[4] J A. Huber, et al., Phys. Scr., (2021)
[5] J. Horacek, et al., Nucl. Fus., (2023)

SOL profiles during the ELM (unseeded)

CE COMPASS

[1] M. Komm, et al., Nucl. Fus., (2023)

D. Tskhakaya

: IPP

T _i[eV]

Plasma VDFs at the ID sheath

Clear **double Maxwellian** structure of the **ion VDF** corresponding to the ELM and thermal ions

Cut-off Maxwellian electron VDF corresponding to the ELM electrons. Thermal electrons are expelled from the sheath by increased potrntial frop

Boundary conditions

Boundary conditions at the divertors during the ELM

$$\begin{split} K_{s}(\tau_{i}) &= K_{s}(0) + \left(\frac{A_{s}}{(\delta_{s}\tau_{s})^{Z_{s}}} + B_{s}\right) \exp\left(-\frac{1}{2(\delta_{s}\tau_{s})^{2}}\right), \quad s = e, i, pot \\ K_{e,i} &\equiv \gamma_{e,i}, \quad K_{pot} = \psi, \quad \tau_{s} = \frac{t}{t_{s}}, \quad t_{pot} = t_{e}, \quad Z_{i} = 2.5, \quad B_{e} = B_{pot} = 0, \\ A_{i} &= 0.7\frac{T}{T_{0}}\left(1 + 0.35\ln\frac{n}{n_{0}}\right) - 0.5, \quad B_{i} = 2.25 - \gamma_{i}(0), \quad \delta_{i} = 0.09\left(\frac{nT}{n_{0}T_{0}}\right)^{0.6} + 0.5, \\ A_{e} &= 3.9\frac{T}{T_{0}}\left(1 + 0.9\frac{n}{n_{0}}\right) - 12.2, \quad \delta_{e} = 0.5\ln\left(1 + \sqrt{\frac{T_{0}}{T}}\right) + 0.0035\left(\frac{n}{n_{0}}\right)^{2} + 0.2, \\ A_{pot} &= 22.0\frac{(T/T_{0})^{2.5}}{760(n_{0}/n)^{2} + (T/T_{0})^{2.5}} + 0.008\left(\frac{n}{n_{0}}\right)^{3} + 0.5, \quad \delta_{pot} = 0.0008\left(\frac{n}{n_{0}}\right)^{2} + 0.4, \\ Z_{e} &= 0.14\frac{T}{T_{0}} + 0.65, \quad Z_{pot} = 0.028\left(\frac{nT}{n_{0}T_{0}}\right) + 0.75, \end{split}$$

[D. Tskhakaya, F. Subba, X. Bonnin, D.P. Coster, W. Fundamenski, R.A. Pitts, CPP 2008]

Implemented in EDGE2D

[D.M. Harting, et al. JNM 2015]

- ➤ 1D classical BC for the potential and up to the second moments of the VDF exist. Multi-ion case contains density derivatives → hard to use
- > 1D BC for the collisional sheath exist and can be implemented (as this was done for SOLPS-ITER and GBS)
- > A new (simplified) 2D BC has been proposed
- > There is amodel for BC for the large ELMs
- > New task: study BCs for

$$\frac{\partial}{\partial s}T_{\parallel,j} \quad \frac{\partial}{\partial s}T_{\perp,j}$$