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The purpose of this document is to state a set of coding rules for the development and maintenance of EIRENE (1). Moreover a set of rules is stated for the code versioning workflow.

The scope of this set of rules mainly concerns the code that is either added newly or refactored. The bottom line being that functionality must be preserved. There is, however, a large volume of code that has a lower priority as far as refactoring is concerned (bug fixes should still be carried out). A definition or description is needed what part of the code is given what priority (3).

Rules concern the EIRENE code in general, whether it is will be used stand-alone or coupled.
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1. [Example (2)] When working on a new code feature or bug fix, it is important to work in a branch forked from a development branch from the official distribution. These are the `develop`, `release/3.1.0`, and `feature/wg-release` branches. It is necessary to keep that forked branch abreast of any changes occurring in the reference branch, either by rebasing, merging, or cherry-picking the appropriate commits, before submitting any pull requests. Doing so regularly decreases the amount of work required to inspect the pull request and ensures all relevant code updates can be introduced with minimal risk of errors.
2. [Example (2)] Any pull request introducing changes to the physics results of the code that would affect some of the provided reference examples must contain pointers to newly converged occurrences of these affected examples.
3. [Example (2)] When introducing a new switch or extending its functionality, a description of this switch must be added to the documentation files, within the same commit or pull request. Changes to the default values of switches (see Coding > General > rule 3) need to be explicitly mentioned in the commit message.
4. …
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The following first concerns newly (i.e. with respect to Milestone version…) added code. The core of EIRENE that is not to be altered to the new style is discussed in the subsection "Preserving legacy code" below.
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1. Use Fortran 2003 or higher…
2. Code changes must preserve functionality.
3. In order for variables, procedures, modules, etc. to be regarded as being in its own EIRENE 'namespace' the appropriate prefix or suffix must be used in their names. This avoids conflicts with variables, procedures, etc. of the same name in other (coupled) code(s).
4. [Example (2)] Code that only works for a particular set of cases, and is not general, should be avoided whenever possible and must always be identified as such. The code should then include safeties and/or error/warning messages to prevent its unintentional use by an unsuspecting user.
5. [Example (2)] If modifying the code equations or introducing a new physics term, this shall be reflected in the physics model description chapter of the SOLPS-ITER manual, within the same commit or pull request.
6. [Example (2)] When introducing a new switch or extending its functionality, a description of this switch must be added to the documentation files. (In addition, see also Rules concerning versioning > rule 3).
7. …
8. Code should be written in compliance with the following (set of) standard(s) (3):
a. …
9. In code documentation: use Doxygen. See section Documentation.
10. When changing code, update the Doxygen, as well as possibly affected links to… and/or entries in the manual.
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As of Fortran 90, see also (4):
1. 132 characters per line.
2. '&' line continuation character. Split long (how long?) lines with this character.
3. '!' comment initiator.
4. Significant blanks:
a. indentation of 2 spaces in
i. the body of modules (except the CONTAINS statement)
ii. the body of procedures, do-loops, if-statements, …
iii. the indentations are cumulative (so the body of a do-loop in a function in a module has an indentation of 6 spaces)
b. spacing of routine arguments (in call and declaration)
c. …
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Use capitals and naming for the following:
1. DO
(…)
END DO
2. MODULE name
(…)
END MODULE name
3. SUBROUTINE name (argument list)
(…)
END SUBROUTINE name
4. TYPE FUNCTION name (argument list)
(…)
END FUNCTION name
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There is a distinction between the extensions: .f (lower case) and .F (upper case): upper case. The upper case files (*.F) are files that have been preprocessed (converted) with a pragma directive/macro.
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…
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1. Use clear names that tell what the variable does
2. 
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Subroutines and functions should start with the prefix 'eirene_'.
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Separate functionality in modules that reside in the 'src/modules' directory.

Start each module with IMPLICIT NONE statement. The file that imports the module uses the IMPLICIT NONE statement immediately after the USE eirmod_name statement.
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Use a clear name, eventually with underscores, in lower case, starting with the prefix 'eirmod_' e.g. eirmod_json.
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…
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See also (5).
1. Do not use
a. GO TO statements
b. COMMON blocks
2. IMPLICIT statements.
Do not use IMPLICIT statements other than IMPLICIT NONE. All named constants, variables and functions should be explicitly typed (5).
The IMPLICIT NONE statement should appear after the PROGRAM statement and before any type declaration statements.
3. INTENT attributes
INTENT(IN), INTENT(OUT), INTENT(INOUT) 
4. SAVE statements
In modules …
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…
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There is a distinction between documentation of the code (under the hood, for developers) and its use (user manual). In some cases there is a thin line between the two, so that their scopes should be defined. Moreover In code and outside of code documentation is linked via… When changing code, update all affected documentation, as well as possibly affected links to… and/or entries in the manual.
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Mainly for developers. Use the Doxygen (6). This means that at least the following should be described … in the following format ….

From Doxygen, the following entries are generated:
· PDF …
· HTML code that is published via …
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Manual. Mainly for users. Input files, interface description, reference to parameters. Emphasis the physics.
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