EIRENE coding and versioning rules - CONCEPT
Last update: 09-02-24 (PWCG)

Contents
Introduction	1
Rules concerning versioning (Git)	2
Coding	2
General	2
Formatting	3
Free format	3
Format of constructs, procedures, functions, modules	3
File extensions	3
.f and .F	3
.f90, .F90	4
Variable names	4
Procedure names	4
Modules	4
Module names	4
Interfaces	4
Best practices	4
Compiler and preprocessor related	4
Documentation	4
In the code	5
Outside of the code	5
References	5

[bookmark: _Toc158368644]Introduction
The purpose of this document is to state a set of coding rules for the development and maintenance of EIRENE (1). Moreover a set of rules is stated for the code versioning workflow.

The scope of this set of rules mainly concerns the code that is either added newly or refactored. The bottom line being that functionality must be preserved. There is, however, a large volume of code that has a lower priority as far as refactoring is concerned (bug fixes should still be carried out). A definition or description is needed what part of the code is given what priority (3).

Rules concern the EIRENE code in general, whether it is will be used stand-alone or coupled.
[bookmark: _Toc158368645]Rules concerning versioning (Git)

1. [Example (2)] When working on a new code feature or bug fix, it is important to work in a branch forked from a development branch from the official distribution. These are the `develop`, `release/3.1.0`, and `feature/wg-release` branches. It is necessary to keep that forked branch abreast of any changes occurring in the reference branch, either by rebasing, merging, or cherry-picking the appropriate commits, before submitting any pull requests. Doing so regularly decreases the amount of work required to inspect the pull request and ensures all relevant code updates can be introduced with minimal risk of errors.
2. [Example (2)] Any pull request introducing changes to the physics results of the code that would affect some of the provided reference examples must contain pointers to newly converged occurrences of these affected examples.
3. [Example (2)] When introducing a new switch or extending its functionality, a description of this switch must be added to the documentation files, within the same commit or pull request. Changes to the default values of switches (see Coding > General > rule 3) need to be explicitly mentioned in the commit message.
4. …

[bookmark: _Toc158368646]Coding
The following first concerns newly (i.e. with respect to Milestone version…) added code. The core of EIRENE that is not to be altered to the new style is discussed in the subsection "Preserving legacy code" below.

[bookmark: _Toc158368647]General

1. Use Fortran 2003 or higher…
2. Code changes must preserve functionality.
3. In order for variables, procedures, modules, etc. to be regarded as being in its own EIRENE 'namespace' the appropriate prefix or suffix must be used in their names. This avoids conflicts with variables, procedures, etc. of the same name in other (coupled) code(s).
4. [Example (2)] Code that only works for a particular set of cases, and is not general, should be avoided whenever possible and must always be identified as such. The code should then include safeties and/or error/warning messages to prevent its unintentional use by an unsuspecting user.
5. [Example (2)] If modifying the code equations or introducing a new physics term, this shall be reflected in the physics model description chapter of the SOLPS-ITER manual, within the same commit or pull request.
6. [Example (2)] When introducing a new switch or extending its functionality, a description of this switch must be added to the documentation files. (In addition, see also Rules concerning versioning > rule 3).
7. …
8. Code should be written in compliance with the following (set of) standard(s) (3):
a. …
9. In code documentation: use Doxygen. See section Documentation.
10. When changing code, update the Doxygen, as well as possibly affected links to… and/or entries in the manual.

[bookmark: _Toc158368648]Formatting
[bookmark: _Toc158368649]Free format
As of Fortran 90, see also (4):
1. 132 characters per line.
2. '&' line continuation character. Split long (how long?) lines with this character.
3. '!' comment initiator.
4. Significant blanks:
a. indentation of 2 spaces in
i. the body of modules (except the CONTAINS statement)
ii. the body of procedures, do-loops, if-statements, …
iii. the indentations are cumulative (so the body of a do-loop in a function in a module has an indentation of 6 spaces)
b. spacing of routine arguments (in call and declaration)
c. …

[bookmark: _Toc158368650]Format of constructs, procedures, functions, modules
Use capitals and naming for the following:
1. DO
(…)
END DO
2. MODULE name
(…)
END MODULE name
3. SUBROUTINE name (argument list)
(…)
END SUBROUTINE name
4. TYPE FUNCTION name (argument list)
(…)
END FUNCTION name

[bookmark: _Toc158368651]File extensions
[bookmark: _Toc158368652].f and .F
There is a distinction between the extensions: .f (lower case) and .F (upper case): upper case. The upper case files (*.F) are files that have been preprocessed (converted) with a pragma directive/macro.

[bookmark: _Toc158368653].f90, .F90
…

[bookmark: _Toc158368654]Variable names
1. Use clear names that tell what the variable does
2. 

[bookmark: _Toc158368655]Procedure names
Subroutines and functions should start with the prefix 'eirene_'.

[bookmark: _Toc158368656]Modules
Separate functionality in modules that reside in the 'src/modules' directory.

Start each module with IMPLICIT NONE statement. The file that imports the module uses the IMPLICIT NONE statement immediately after the USE eirmod_name statement.

[bookmark: _Toc158368657]Module names
Use a clear name, eventually with underscores, in lower case, starting with the prefix 'eirmod_' e.g. eirmod_json.

[bookmark: _Toc158368658]Interfaces
…

[bookmark: _Toc158368659]Best practices
See also (5).
1. Do not use
a. GO TO statements
b. COMMON blocks
2. IMPLICIT statements.
Do not use IMPLICIT statements other than IMPLICIT NONE. All named constants, variables and functions should be explicitly typed (5).
The IMPLICIT NONE statement should appear after the PROGRAM statement and before any type declaration statements.
3. INTENT attributes
INTENT(IN), INTENT(OUT), INTENT(INOUT) 
4. SAVE statements
In modules …

[bookmark: _Toc158368660]Compiler and preprocessor related
…
[bookmark: _Toc158368661]Documentation
There is a distinction between documentation of the code (under the hood, for developers) and its use (user manual). In some cases there is a thin line between the two, so that their scopes should be defined. Moreover In code and outside of code documentation is linked via… When changing code, update all affected documentation, as well as possibly affected links to… and/or entries in the manual.

[bookmark: _Toc158368662]In the code
Mainly for developers. Use the Doxygen (6). This means that at least the following should be described … in the following format ….

From Doxygen, the following entries are generated:
· PDF …
· HTML code that is published via …

[bookmark: _Toc158368663]Outside of the code
Manual. Mainly for users. Input files, interface description, reference to parameters. Emphasis the physics.

References
1. Reiter, D. The EIRENE Code User Manual. 
2. ITER Organisation. CONTRIBUTING.MD. December 18, 2023.
3. Emil Løvbak, Xavier Bonnin, Oskar Lappi, Huw Leggate. EIRENE formatting. 05-05-2023.
4. A, Marshall. https://www.mrao.cam.ac.uk/~pa/f90Notes/HTMLNotesnode44.html. 
5. Chapman, S.J. Fortran 95/2003 For Scientists and Engineers Third Edition. 2008.
6. Doxygen. https://www.doxygen.nl/. 




2

