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Multivariable feedback control of radiative loss-processes 

using multi-spectral imaging
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Journal publications
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First 

Author

Initials Title of work Journal / Conference Pinboard ID

Koenders J.T.W. Systematic design of a decoupled multi-input multi-output 

controller: a demonstration on TCV using multi-species 

gas injection

Nuclear fusion 34993

Derks G.L Development of real-time density feedback control on 

MAST-U in L-mode

Fusion Engineering 

and design (2nd 

review)

36329

Derks G.L Multi-machine benchmark of the self-consistent 1D 

scrape-off layer model DIV1D from stagnation point to 

target with SOLPS-ITER

Plasma Physics and 

Controller Fusion 

(2nd review)

36331

Derks G.L Benchmark of a self-consistent dynamic 1D divertor 

model DIV1D using the 2D SOLPS-ITER code

Plasma Physics and 

Controller Fusion

32773

Koenders J.T.W. Systematic extraction of a control-oriented model from 

perturbative experiments and SOLPS-ITER for emission 

front control in TCV

Nuclear fusion 31120

Koenders J.T.W. Model-based impurity emission front control using 

deuterium fueling and nitrogen seeding in TCV

Nuclear fusion 32797

Perek A. Quantitative Balmer line analysis of multispectral imaging 

data to infer 2D maps of edge plasma parameters in TCV

Nuclear Fusion 29903



Hardware and software implementation for real-time analysis
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Does the GPU Direct Memory Access work?
• Yes, I tested it on Mantis2b PC.

Can we perform the real-time tomographic inversion?

Can we perform the real-time parameter inference?

Can we setup parallel processing streams on the GPU 
using Multi-Instance GPU?

Can we perform operations within a <1ms jitter to 
ensure real-time performance?

There are no known obstacles to 
performing integration for real-time 

control. 



Hardware and software implementation for real-time analysis

Does the GPU Direct Memory Access work?
• Yes, I tested it on Mantis2b PC.

Can we perform the real-time tomographic inversion?

Can we perform the real-time parameter inference?

Can we setup parallel processing streams on the GPU 
using Multi-Instance GPU?

Can we perform operations within a <1ms jitter to 
ensure real-time performance?

There were no known obstacles to 
performing integration for real-time 

control. 

Further tests of data manipulation:
• Image copy between CPU RAM 

and GPU RAM (100-200us), 
calibration (30us), preprocessing 
(30us) etc. are practically 
negligible!

Previously reported tomographic 
inversion timings were faulty! 
• Reported 2ms -> measured 40-

60ms.
• Upon close inspection, the 

inverted data was up to 40% off 
when forward-modelled.

• A few more things came out upon 
close inspection…
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Neural network: timing

Network Architecture: Unfolded

We used 3 (40ms to 60ms) or 5 unfolds. 

How many do we need? 
The target is 5ms!

Output after each unfold of a 9-fold network:
1

Output of the first and last unfold were within 2%!

The results did not improve with 
multiple unfolds: use only one 

unfold (~23ms)
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Solution: Neural network: timing for 1 frame

Network Architecture: Unfolded

One unfold (~23ms)

Decrease the input by 2x binning 
and a region of interest from 

1032x772px to 345x205px (~17ms)

Decrease the output to 128x128  
instead of 256x256 (~6ms)

Compile with tensorRT: 
• Full precision (5ms)

• Half precision (4.3ms)

Replace the triangular grid with a square one:  Full precision (3ms); half precision (2.6ms) with 
256x128 output

Current network architecture:



Neural network: Training

ImagePredicted poloidal plane

Predicted Image

Forward modelling lossInversion loss

Poloidal plane
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Neural network: Comparison to SART

Differences:
• Gradients
• Reconstruction limits
• Artefacts
• >1200Hz vs 5 Hz on a GPU

Next questions:
• Can it be taught that the 

data can be translated?
• What needs to be 

changed/added for the 
gradients to be recovered?
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Hardware and software implementation for real-time analysis
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Exhaust control schematic
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Image processing (extracting control parameters)
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Image 

Processing ?

For now, focus on 
• Emission front (e.g. HeII)
• Total ionization rate
• Ionization front
• Total recombination rate
• Recombination front
• MARFE detection
• 2-point temperature gradient
• 2-point density gradient
• 2-point model; fmom fcool
• ……
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Image processing (extracting control parameters)

Control parameters
• HeII front
• Ionization front
• MARFE detection

➢ not expected to be decoupled
➢ complement each other in the 

operating space.

x-point

detachment progression

Density ramp cartoon

target

HeII
Ioniz.

HFS recomb.
Cexh
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Image processing (extracting control parameters)

HFS marfe

Ionization front

HeII front
#63546

Weighted average trough logistic function
+marfe
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SCD: model-based ‘upsampling’

• Example: controlled discharge of 
CIII front position with D2 gas

• Prediction allows controller to 
‘see’ result of its actions before 
waiting for the next 
measurements

• Prevents strong overshoot due to 
integral wind-up in low-sampling 
rate or high-delay cases
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Focus experimental demonstration last half year

1. Establish/choose an L-mode PEX shape density ramp scenario
• Check control variables through detachment progression

2. Deploy system-identification measurements around expected 
control bandwidth of 5-7 Hz.

3. Design and test Ionization front controller with ML in the loop
• Deploy Kalman filter if needed

4. Design and test combined HeII, Ionisation, MARFE controller
• Deploy Kalman filter if needed

5. Demonstrate multivariable control, including FIR measurement

ENR team | ENR Project no. 11 | MIMO control of radiative loss-processes | 05-02-2024 | Page 17


	Slide 1: Multivariable feedback control of radiative loss-processes using multi-spectral imaging
	Slide 2: Project overview (and status)
	Slide 3: Journal publications
	Slide 4: Hardware and software implementation for real-time analysis
	Slide 5: Hardware and software implementation for real-time analysis
	Slide 6: Neural network: timing
	Slide 7: Solution: Neural network: timing for 1 frame
	Slide 8: Neural network: Training
	Slide 9: Neural network: Comparison to SART
	Slide 10: Hardware and software implementation for real-time analysis
	Slide 11: Exhaust control schematic
	Slide 12: Image processing (extracting control parameters)
	Slide 13: Image processing (extracting control parameters)
	Slide 14: Image processing (extracting control parameters)
	Slide 15: SCD: model-based ‘upsampling’
	Slide 16: SCD: model-based ‘upsampling’
	Slide 17: Focus experimental demonstration last half year

