WPENR, Technology and Systems, Project no.11

Multivariable feedback control of radiative loss-processes using multi-spectral imaging

M. van Berkel (P.I.)¹, A. Perek^{1,2}, J.T.W. Koenders^{1,3}, C. Galperti²,
B.P. Duval², O. Février², T.A. Wijkamp^{1,3}, I.G.J. Classen¹,
M. O'Mullane⁴, J. Citrin¹, E. Westerhof¹, C. Theiler² and the TCV Team^{*}
Supported by: K. Verhaegh, B. Dudson, L. van Leeuwen, G.L. Derks, J. Caballero, L. Martinelli, E. Huett

¹DIFFER – Dutch Institute for Fundamental Energy Research, Eindhoven, The Netherlands ²École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), Lausanne, Switzerland ³Eindhoven University of Technology, Control Systems Technology, Eindhoven, The Netherlands ⁴University of Strathclyde, Glasgow, United Kingdom ⁵See author list of S. Coda et al. 2019 Nucl. Fusion 59 112023

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Project overview (and status)

Journal publications

First	Initials	Title of work	Journal / Conference	Pinboard ID
Author				
Koenders	J.T.W.	Systematic design of a decoupled multi-input multi-output	Nuclear fusion	34993
		controller: a demonstration on TCV using multi-species		
		gas injection		
Derks	G.L	Development of real-time density feedback control on	Fusion Engineering	36329
		MAST-U in L-mode	and design (2nd	
			review)	
Derks	G.L	Multi-machine benchmark of the self-consistent 1D	Plasma Physics and	36331
		scrape-off layer model DIV1D from stagnation point to	Controller Fusion	
		target with SOLPS-ITER	(2nd review)	
Derks	G.L	Benchmark of a self-consistent dynamic 1D divertor	Plasma Physics and	32773
		model DIV1D using the 2D SOLPS-ITER code	Controller Fusion	
Koenders	J.T.W.	Systematic extraction of a control-oriented model from	Nuclear fusion	31120
		perturbative experiments and SOLPS-ITER for emission		
		front control in TCV		
Koenders	J.T.W.	Model-based impurity emission front control using	Nuclear fusion	32797
		deuterium fueling and nitrogen seeding in TCV		
Perek	A.	Quantitative Balmer line analysis of multispectral imaging	Nuclear Fusion	29903
		data to infer 2D maps of edge plasma parameters in TCV		
DIFFER	EPFL			

Hardware and software implementation for real-time analysis

Does the GPU Direct Memory Access work?Yes, I tested it on Mantis2b PC.

Can we perform the real-time tomographic inversion?

Can we perform the real-time parameter inference?

Can we setup parallel processing streams on the GPU using Multi-Instance GPU?

Can we perform operations within a <1ms jitter to ensure real-time performance?

There are no known obstacles to performing integration for real-time control.

Hardware and software implementation for real-time analysis

Does the GPU Direct Memory Access work? Yes, I tested it on Mantis2b PC.

Can we perform the real-time tomographic inversion?

Can we perform the real-time parameter inference?

Can we setup parallel processing streams on the GPU using Multi-Instance GPU?

Can we perform operations within a <1ms jitter to ensure real-time performance?

control.

Further tests of data manipulation:

- Image copy between CPU RAM and GPU RAM (100-200us), calibration (30us), preprocessing (30us) etc. are practically negligible!
- Previously reported tomographic inversion timings were faulty!
- Reported 2ms -> measured 40-60ms.
- Upon close inspection, the inverted data was up to 40% off when forward-modelled.
- A few more things came out upon close inspection...

There were no known obstacles to performing integration for real-time

Neural network: timing

Network Architecture: Unfolded

We used 3 (40ms to 60ms) or 5 unfolds.

How many do we need? The target is 5ms!

The results did not improve with multiple unfolds: use only one unfold (~23ms)

EPFL

Output after each unfold of a 9-fold network:

Output of the first and last unfold were within 2%!

Solution: Neural network: timing for 1 frame

Network Architecture: Unfolded

EPFL

Current network architecture:

	Name	Туре	# Parameters	Output Shape
	input_1	InputLayer	0	,345,205,1
	flatten	Flatten	0	None, 70725
	batch_sparse_dense_matmul_2	BatchSparseDenseMatmul	0	None, 32768
	tf.zeros_like	TFOpLambda	0	None, 32768
	square_sirt_blocksquare	SquareSirtBlock_Square	1	None, 32768
	sequential	Sequential	278241	None, 256, 128, 1
	instance_normalization_16	InstanceNormalization	2	None, 256, 128, 1
	flatten_1	Flatten	0	None, 32768
	reshape_1	Reshape	0	None, 256, 128, 1
	inversion	Conv2D	10	None, 256, 128, 1

Replace the triangular grid with a square one: Full precision (3ms); half precision (2.6ms) with 256x128 output

Neural network: Training

Neural network: Comparison to SART

Differences:

- Gradients
- Reconstruction limits
 - Artefacts
 - >1200Hz vs 5 Hz on a GPU

Next questions:

- Can it be taught that the data can be translated?
- What needs to be changed/added for the gradients to be recovered?

ODIFFER EPFL

Hardware and software implementation for real-time analysis

Does the GPU Direct Memory Access work?Yes, I tested it on Mantis2b PC.

Can we perform the real-time tomographic inversion?

Can we perform the real-time parameter inference?

Can we setup parallel processing streams on the GPU using Multi-Instance GPU?

Can we perform operations within a <1ms jitter to ensure real-time performance?

There are no known obstacles to performing integration for real-time control.

Exhaust control schematic

Image processing (extracting control parameters)

EPFL

For now, focus on

- Emission front (e.g. Hell)
- Total ionization rate
- Ionization front
- Total recombination rate
- Recombination front
- MARFE detection
- 2-point temperature gradient
- 2-point density gradient
- 2-point model; f_{mom} f_{cool}

ENR team | ENR Project no. 11 | MIMO control of radiative loss-processes | 05-02-2024 | Page 12

.....

Image processing (extracting control parameters)

Control parameters

- Hell front
- Ionization front $\succ C_{exh}$
- MARFE detection _
- not expected to be decoupled
- complement each other in the operating space.

Density ramp cartoon

Image processing (extracting control parameters)

DIFFER

EPFL

SCD: model-based 'upsampling'

- Example: controlled discharge of CIII front position with D2 gas
- Prediction allows controller to 'see' result of its actions before waiting for the next measurements
- Prevents strong overshoot due to integral wind-up in low-sampling rate or high-delay cases

SCD: model-based 'upsampling'

- Example: controlled discharge of CIII front position with D2 gas
- Prediction allows controller to 'see' result of its actions before waiting for the next measurements
- Prevents strong overshoot due to integral wind-up in low-sampling rate or high-delay cases

ODIFFER **EPFL**

Focus experimental demonstration last half year

- 1. Establish/choose an L-mode PEX shape density ramp scenario
 - Check control variables through detachment progression
- 2. Deploy system-identification measurements around expected control bandwidth of 5-7 Hz.
- 3. Design and test Ionization front controller with ML in the loop
 - Deploy Kalman filter if needed
- 4. Design and test combined HeII, Ionisation, MARFE controller
 - Deploy Kalman filter if needed
- 5. Demonstrate multivariable control, including FIR measurement

