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_J) Progress on LMD activities in 2023

IPUL activities in 2023

 MHD flows in capillary porous systems

* |nvestigation of thermoelectromagnetic phenomena in realistic liquid metal CPS
Publications and conferences in 2023:

e 15th International Symposium on Fusion Nuclear Technology (ISFNT-15)

* |X International Scientific Colloguium Modelling for Materials Processing, Riga,
September 18-19, 2023, D. Berenis, I. Grants, L. Buligins Surface deformations of liquid
metal flow in porous media in external uniform magnetic field. (Accepted publication
in Magnetohydrodynamics)

L. Buligins, I. Bucenieks, |. Grants, I. Kaldre, K. Kravalis, O. Mikanovskis. MHD Flow in
Simple Cubic Periodic Array Geometry. Journal of Fusion Energy. (2023)42:55
https://doi.org/10.1007/s10894-023-00390-8
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@» MHD flow in capillary porous systems
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3D printed capillary porous system is prepared and it is tested in high magnetic field in
electromagnet and the superconducting magnet measuring the pressure drop and flow
rate depending on the magnetic field direction and strengths. For better understanding
of the physics the process is numerically simulated and compared with previous
analytical models. It is found out that magnetic field can significantly affect the pressure
flow rate behavior.
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L MHD flow in capillary porous systems: Numerical simulation
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@) Pressure-Flowrate relation in high magnetic field
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() MHD flow in capillary porous systems: Conclusions

e Two-phase parametric direct numerical simulation was successfully l &
performed for a 6 cell matrix. - <

e Simulation without surface tension models the liquid metal at the
boiling temperature.

e When flow is applied to the cell matrix, a height difference

between inlet and outlet is produced and consequently cell walls
are uncovered.

e Magnetic field perpendicular to pressure drop and gravitation
direction has the strongest braking effect and results in the largest
height difference between inlet and outlet.

e Magnetic field parallel to the pressure drop shows slight increase
the height difference.



)} Thermoelectric phenomena may have significant effect on the liquid
metal flow in magnetic field

Simplified Navier-Stokes equation allows to estimate the TEMC
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@) Thermoelectromagnetic effects in capillary porous systems

=
Liquid metal capillary-porous system in plasma chamber is subjected to high thermal
gradient and strong magnetic field, thus our calculations and preliminary experiments have
demonstrated that thermoelectromagnetic effect can be significant. We have done
numerical calculations, showing the force density in the liquid metal, which can exceed any
other force acting on it, and also we have done series of experiments in different
geometries showing that thermoelectromagnetic convection can drive significant liquid
metal flow in small scale. o o a0 30
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Liquid metal experiment and numerically calculated velocity distribution
in liquid metal with applied axial and transient magnetic field of 0.2 Tesla.

Liquid metal pool experiment. 1-GalnSn, 2-
Cobalt rod, 3-Copper, 4-Permanent magnets ~ Agreement between numerical modeling and actual surface observation

measurements is good.
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Experiment to quantify TEMC in GalnSn/Co system
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i) Relevant dimensionless numbers and equations

For numerical simulation of the process we use non-compressible flow approximation,
heat transfer equation and Ohms law with Seebeck term for calculation of
electromagnetic problem.

Lorentz force
— .
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;=E+u><B— SVT

« Inertial and viscous forces is characterized by Reynolds number Re

« Convective and conductive heat transfer is the Peclet number Pe

« Buoyancy and viscous force is characterized by Grasshoff number Gr

« Marangoni and viscous force is characterized by Marangoni number Ma.

. Electromagnetic and viscous forces is characterized by Hartmann number squared Ha?.
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{\fﬁ) Plans for 2024 and beyond

In 2024 it is planned to continue the research activities in following directions:

* Experimental and theoretical investigation of the thermoelectric phenomena and its
role into realistic conditions. It is planned to continue small scale experiments with
cobalt/GalnSn system for better understanding of MHD flow and merging in different
geometries. Experimental results are compared with numerical results and scheduling
algorithm is developed for comparison with the processes which can take place in
actual plasma facing component. It is planned to do numerical simulation and
compare the results with measured liquid metal flow.

* Analysis of the MHD flow in capillary porous systems. It is planned to continue
experimental work with various 3D printed capillary porous systems and investigation
of their behavior under strong magnetic field. Results will be compared with
numerical models and scaled force the processes in plasma chamber.



_J)) IPUL liquid metal laboratory and journal «Magnetohydrodynamics»

https://mhd.sal.lv/
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