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Sn droplet ejection can lead to unacceptable core radiation

Jos Scholte and Thomas Morgan | PRD-LMD End-of-year/Kick-off meeting | 08-02-20242

Maximum impurity concentration 
DEMO for different elements 
Pütterich et al., 2019 NF, 0D model assuming τ*=7,5

Sn

Li

WC
Unreliable 
data 

ASDEX Upgrade with an Sn 
module 1. J. G. A. Scholte et al., Nucl. 

Mater. Energy. 37, 101522 (2023). 
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• Droplet emission observed from Sn in several different experiments1,2,3

• Could be strong limit on Sn CPS application due to core contamination
• Not observed for Li samples – why? 
• Under what conditions happens, and how to prevent in Sn?

1A. Manhard Nucl. Fusion 60 (2020) 106007
2W. Ou Nucl. Fusion 61 (2021) 066030[3]
3J. G. A. Scholte Nuclear Materials and Energy 34 (2023) 101315



Possible reasons for droplet ejection

1. Localized boiling: Seen in welding (Spatter) 
Not possible because:

• Should be more droplet in Li vs Sn

• Droplets are also seen when T<500°C

2. JxB forces:
Not possible because: Nano-PSI (and others) has no B-field 

3. Other instabilities: 
Unlikely: A CPS should suppress those 

4. Chemical erosion: Sn + 4H → SnH4 → Sn +2H2

Unlikely: Surface effect, how does it eject?

5. Hydrogen saturation leading to H2 bubbles: Champagne 
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Shadowgraphy

Goal: Test the hypothesis that:

“Sn droplets eject due to a gas bubble collapse”

Jos Scholte and Thomas Morgan | PRD-LMD End-of-year/Kick-off meeting | 08-02-20244

Expected

6. F. J. Resch, J. S. Darrozes, G. 
M. Afeti, J. Geophys. Res. 
Ocean. 91, 1019–1029 (1986).

Result



Calculation of hydrogen dissolved in a liquid metal 

Reaction equation of hydrogen dissolving in a liquid 
metal LM

1

2
H2 ⇌ H(LM)

The steady-state mol fraction, using Sievert’s law and 
assuming an ideal gas.

𝑥𝐻,𝑔 =
Moles of H

Total moles
= 𝐾H,𝑔

𝑝H2

𝑝o
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We can find this value in literature

Reaction equation of hydrogen radicals dissolving 
in a liquid metal LM

𝐻• ⇌ H(LM)

𝑥H,𝑟 = 𝐾H,𝑟

𝑝H

𝑝o

𝐾H,𝑟 =  exp
217,988 − 49,37𝑇

𝑅𝑔𝑇
 𝐾H,𝑔

Calculation plan: 

1. Determine xH on the PFS

2. Determine the increase in xH in the implantation zone

1

2

Independent of the material !!!!!



The influence of radicals and gas

Useful quantities
Saturation ratio: 𝛼 =

𝑥H

𝑥H 𝑔

Supersaturation ratio: 𝑆 =
𝑥H

𝑥H 𝑔
− 1

𝑆H,1 = exp
217,988 − 49,37𝑇

𝑅𝑔𝑇

𝑝H

𝑝𝐻2𝑝o

Laplace pressure bubble: 𝑝 = 𝑝0 +
2𝛾

𝑟

Sieverts Law: 
𝑥𝐻,𝑐𝑟𝑖𝑡

𝑥𝐻,𝑔
=

𝑝𝑐𝑟𝑖𝑡

𝑝H2

Conclusion:
• Critical radius depends on the radical partial pressure
• A reasonable CPS will have a pore radius > 0,1µm

• It could be stable at 750 °C, more realistically 1100°C 

• Material independent* 

* The critical radius depends on surface tension; 
Sn is used in the figure:
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𝛾 [N/m] 
@750C

Sn 0,51

Ga 0,66

In 0,50

Li 0,25

𝑟𝑐𝑟𝑖𝑡 =
2𝛾

𝑝H2(𝛼2 − 1)



Step 2 the ions 

Ficks law of diffusion

𝑥𝐻,0 < 𝑥𝐻,1 +
Γ𝑖𝑚𝑝𝑟𝑖𝑚𝑝

𝑁𝐴𝐷

𝑀LM

𝜌𝐿𝑀

Ignoring the radicals

𝑆H,0 =

Γ𝑖𝑚𝑝𝑟𝑖𝑚𝑝

𝑁𝐴𝐷

𝑀LM
𝜌𝐿𝑀

𝑥H,𝑔
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For Sn, Ga and In  

𝑝H2
 = 1Pa

1

2

N. D. Deveau, P. S. Yen, R. Datta, Int. J. Hydrogen Energy. 43, 
19075–19090 (2018).
P. W. Humrickhouse, IEEE Trans. Plasma Sci. 47, 3374–3379 
(2019).



Preliminary results in Nano-PSI

Jos Scholte and Thomas Morgan | PRD-LMD End-of-
year/Kick-off meeting | 08-02-2024
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Experimental plan in Nano-PSI

• Expose samples for 30min @ 500°C ±20 °C

• No bias or magnetic field

• Total fluence of ≈ 3,6×1023 m-2

Diagnostics:

• 4 Stainless steel witness plates

• Thermocouple 
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Langmuir probe

High speed 
Camera

Camera

Source



Different CPSs exposed to Nano-PSI
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Braids: Hot isolating pressing (UKAEA) Felts (ENEA) Sintered disc (Edgetech 
industries)



First results on Sn erosion
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Cup, no CPS

Braids

Felt

Sintered disc

Sample Mass Loss [mg]

Cup 180,7

Braid 3B 36,3

Braid 3C 108,5

Felt 1

Sintered disc 144,4

RBS Measurements 

• Felt and Sintered disc: quite reasonable at droplet suppression



Sintered disc “sweats” Sn droplets 

Jos Scholte and Thomas Morgan | PRD-LMD End-of-year/Kick-off meeting | 08-02-202412

• Immediate wettings while switching to hydrogen

• Did not sweat as much with only the heater

• Tin can form a pool on top of the CPS, from which it will spit tin. 



Conclusions

• Gas bubble formation is the cause of droplet ejection
• When considering only radicals (and gas)

• The H solubility in liquid metals are independent of the LM
• The critical radius is restricted by the radical partial pressure and not the partial gas pressure 

• When considering only ions
• Strong material dependence 
• Sn has an extremely low hydrogen solubility 

• With all CPSs Sn droplet ejection, Felt and Sintered disc most promising
• Improvement suggestions various CPS manufacturing techniques 

• Felts/Braids: Thermal connection
• Sintered: Brittleness, leakage/pooling 

To be done in 2024 
• What is the influence of ions vs free radicals w.r.t. droplet ejection?

• Use a radical source with the same flux as in the Nano-PSI.

• Do droplets only eject when using Sn or are other metals also effected
• Ga and In have a higher solubility → less droplet ejection? 
• Ions vs radial
• Different pore 
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Back-up slides
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Calculation of hydrogen dissolved in a liquid metal 

Reaction equation of hydrogen dissolving in a liquid 
metal LM

1

2
H2 ⇌ H(LM)

The steady-state mol fraction, using Sievert’s law and 
assuming an ideal gas.

𝑥𝐻,𝑔 =
Moles of H

Total moles
= 𝐾H,𝑔

𝑝H2

𝑝o

We can write this as:

𝐾H,𝑔 = exp −
Δ𝐺𝐻2

o

𝑅𝑔𝑇
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We can find this value in literature

Reaction equation of hydrogen radicals dissolving 
in a liquid metal LM

𝐻• ⇌ H(LM)

𝑥H,𝑟 = 𝐾H,𝑟

𝑝H

𝑝o

𝐾H,𝑟 = exp −
Δ𝐺𝐻

o

𝑅𝑔𝑇

But we can calculate its value

We cannot find this value in literature

Calculation plan: 

1. Determine xH on the PFS

2. Determine the increase in xH in the implantation zone

1

2



We can find the reaction constant from first principles

Δ𝐺H2
o = Δ𝐺𝑓

o(H LM ) −
1

2
Δ𝐺𝑓

o(H2)

Δ𝐺H
o = Δ𝐺𝑓

o H LM − Δ𝐺𝑓
o H•

Δ𝐺H
o = Δ𝐺H2

o +
1

2
Δ𝐺𝑓

o(H2) − Δ𝐺𝑓
o H•

Δ𝐺𝑓
o = Δ𝐻𝑓

o − 𝑇Δ𝑆𝑓
o

Δ𝐺H
o = Δ𝐺H2

o − 217,988 + 49,37𝑇

𝐾H,𝑟 = exp −
Δ𝐺𝐻2

o −217,988+49,37𝑇

𝑅𝑔𝑇

𝐾H,𝑟 = exp −
−217,988+49,37𝑇

𝑅𝑔𝑇
exp −

Δ𝐺𝐻2
o

𝑅𝑔𝑇

𝐾H,𝑟 = exp
217,988−49,37𝑇

𝑅𝑔𝑇
𝐾H,𝑔
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From textbooks one can find that: 
Δ𝐻𝑓

o H2 = 0 Jmol-1, S𝑓
o H2 = 130,68 JK-1mol-1,

Δ𝐻𝑓
o H• = 217,998 kJmol-1, S𝑓

o H• = 114,717 JK-1mol-1

Hydrogen gas Hydrogen 
radicals/atoms

1

2
H2 ⇌ H(LM)

𝐻• ⇌ H(LM)

𝑥𝐻,𝑔 = 𝐾H,𝑔

𝑝𝐻2

𝑝o
𝑥H,𝑟 = 𝐾H,𝑟

𝑝H

𝑝o

𝐾H,𝑔 = exp −
Δ𝐺𝐻2

o

𝑅𝑔𝑇

𝐾H,𝑟

= exp −
Δ𝐺𝐻

o

𝑅𝑔𝑇

Reminder

We can find this value in literature

Independent of the material !!!!!



The supersaturation ratio and critical bubble radius without ions 

Useful quantities

Saturation ratio: 𝛼 =
𝑥H

𝑥H 𝑔

Supersaturation ratio: 𝑆 =
𝑥H

𝑥H 𝑔
− 1

Laplace pressure bubble: 𝑝 = 𝑝0 +
2𝛾

𝑟

Sieverts Law: 
𝑥𝐻,𝑐𝑟𝑖𝑡

𝑥𝐻,𝑔
=

𝑝𝑐𝑟𝑖𝑡

𝑝𝑔

If a bubble is smaller than 𝑟𝑐𝑟𝑖𝑡 the 
surface tensions will shrink the bubble 
until it vanishes. 
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𝑟𝑐𝑟𝑖𝑡 =
2𝛾

𝑝𝑔(𝛼2 − 1)

1

2

Step 1: Determine xH on the PFS
𝑥H,1 = 𝑥H,𝑟 + 𝑥H,𝑔

𝑆H,1 =
𝑥H,𝑟+𝑥H,𝑔

𝑥H 𝑔 
− 1= 

𝑥H,𝑟

𝑥H 𝑔 

𝑆H,1 = 
𝑥H,𝑟

𝑥H 𝑔 
=

exp
217,988−49,37𝑇

𝑅𝑔𝑇
 𝐾H,𝑔

𝑝H

𝑝o

𝐾H,𝑔
𝑝H2

𝑝o

𝑆H,1 = exp
217,988 − 49,37𝑇

𝑅𝑔𝑇

𝑝H

𝑝H2
𝑝oMaterial independent !!!
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