EUROfusion

Towards burning plasmas: theory and simulations

Gyrokinetic simulations of chiriping instabilities: wave-particle nonlinearity (ORB5)

1. Theory compared to
simulations (verification):
chirping modes in presence of

0.40

energetic particles.

Chirping rate from simulations
is proportional to saturation
amplitude (as predicted
theoretically, [Zonca et al.,
Varenna Conf. 2024])
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2. Simulations compared to
experiment (validation):
ASDEX Upgrade discharge
#312213@0.84s

Same chirping range in
simulations as in experiment
Nucl. Fusion 62 126042
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various parameter scans to map
chirping rate vs saturation amplitude

Comprehensive studies on the nonlinear frequency chirping of energetic particle driven Alfvén modes with

the fully gyrokinetic code ORBS.
« Aim to understand the likelihood of a mode to oscillate at a constant frequency or to evolve to nonlinear

chirping oscillations, as well as its consequences on the type of energetic particle induced transport.
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JET #92416: TAE simulations, beat-driven zonal flows (ORB5)

* The excited mode is an n=5, m=10, TAE

Table 1: Simulation parameters -- i
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FIG 5: Time evolution
of scalar potential

FIG 6: Mode structure in
linear phase

« Excitation of zonal flows by TAE
« Force Driven excitation of zonal flows
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FIG 9 : Time evolution of TAE
field and zonal flow

FIG 10 :Zoom showing growth
rate doubling
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FIG 6: Mode structure in
nonlinear phase

FIG 7: Frequency spectrum. Black line are the

SAW continuum
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SAW continuum spectrum from FAICON

» ITG mitigation by forced-driven zonal flows
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FIG 12: ITG simulation with forced driven zonal flows
emulated by the orb5 antenna module

FIG 11: Radial structure of the
excited zonal flow
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Requires a comprehensive theoretical
framework for the self-consistent
description of drift Alfven wave
excitation and phase space energetic
particle transport in fusion plasmas
[Chen&Zonca RMP16].

Nonlinear gyrokinetic formulation of
fluctuation spectrum evolution and
energetic particle transport.
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FIG 8: Radial mode structure
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FIG 13: ITG mitigation by forced driven
zonal flows

ITER 7.5MA (IMAS #101006) Pre-fusion-power-operation-2 case (ORB5)

e H-plasma, 1/2 fields, 1/2
current, NBl-heated

¢ Low shear, (multi-) reversed |
g-profile due to off-axis beams | [
e Flat density, peaked |
temperature profiles
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ITER 7.5MA (without EPs): stable TAEs, EAEs, RSAEs;

weakly-damped n=12 BAEs (minimum of disp
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ITER 7.5MA (without EPs): other instabilities
¢ ITG — Unstable electrostatc modes found in range of n = 180 - 200

e Unexpected electromagnetic modes found in range of n = 50 - 80

Higher-n core BAEs/AITGs
(Alfvénic ITG) in the absence of
EPs (driven unstable by bulk
plasma?)

— flute-like structure

Low frequency: in range
40 < n < 70 (v depends on
distance between rational and

i g-extrema)
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A. Mishchenko for TSVV Task-10

Plasma heating in Q = 10 ITER baseline scenario will be dominated by fusion-born a particles. DEMO will operate close to ignition, employing auxiliary power only for control purposes.

Understanding of burning plasma physics is an urgent point to be addressed. Significant rate of a particle generation is inaccessible to present devices. Theory and modelling are of particular importance.
Energetic particles in reactor-relevant plasmas have a unique and crucial role as mediators of cross-scale couplings making transport in fusion devices a nonlinear multi-spatiotemporal-scale process.
Predictive analyses based on first principles computations is challenging. Developing a deep understanding (high-fidelity and reduced models) of the nonlinear self-organizing dynamics in burning plasmas is essential.

Aim of the project: develop a self-consistent description and simulation tools for interaction of energetic particles with MHD modes, turbulence, and kinetic plasma profiles in tokamak and stellarator geometries.
NL wave-particle

Gyrokinetic simulations of collisionless tearing modes (ORB5)
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Island saturation and healing

1. KH Instability at beginning of island decay

Excitation of Alfvénic Modes via Electromagnetic
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Experimental W7-X data

Experimental Results: Mendes et al., NF 63 (2023)

* predominant ITG turbulence observed in W7-X (density fluctuations)

* dominant Alfvénic frequency band is seen in many experiments

» temporal evolution of turbulence (PCl) and magnetic fluctuations -E
(Mirnov) is found very similar over entire discharges, no fast ions!

e Alfvénic fluctuation amplitudes and turbulence level are correlated 0251

Hypothesis: Alfvénic fluctuations in W7-X are driven by ITG turbulence.

Synergy with TSVV13 and TSVV12
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Linear growth rate scales as expected
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2. Zonal fields impact islands
modifying background current
and safety factor profile

Turbulence in Wendelstein 7-X (EUTERPE)
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e early ITG (high-m) activity

~ | eZonal Flow & Alfvénic modes
when ITG has passed threshold
e growth rate cascade
Vi:V2iV3=Yy:2y:3y

(similar to 2y observed in
“beat-driven” ZFs)
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The role of ITG activity.
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Gyrokinetic simulations of MHD-unstable stellarator configurations (EUTERPE)

08 Linear instability: comparison GK (x),
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ol
" Nei 4
Jejir Me,i ;
N\ s
\, A |

£
|3 Bottom: GK frequency vs. omega_star
o I % ‘0'752 , A
----------------------- 5 - 0.2 X ¥ ¥ ,
7 | xF T =
2 I\
Bk o
0 07 > £
normalized effecti\}e minor radius r/a * 0%
0 + ..........
21 | - 1 & 1y
f-10 : <+
E 1 I I [ 3 ] X % _>*<_
\ f —‘ x
Y | X
-1 5 i i 30 - -
1T [ l 0 0.01 0.02
9 10 7 8 96 7 8 <p>
R/m
07 0.002<(B) <0.021
= (dark blue to red)
4-period HELIAS [5] stellarator § | NLion energy flux
Mercier-unstable at finite B! = |
(not a reactor candidate) &)
Perform full-torus GK simulations
Compare to MHD (CAS3D, CKA) B ' | |
0 10 20 30 40
t/us

Dominant Fourier harmonics: ideal-MHD (solid)
vs. GK (dashed). Very good agreement!
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Perturbed field-line tracing for GK magnetic field:
nonlinear growth of magnetic islands, ergodization

Plasma and fusion
reactivity profiles

Internal kink instability. Hybrid simulations
fusion alphas. Nonlinear stationary helical
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Burning plasmas as complex self-organized systems:

Multi-spatiotemporal
scale fluctuations

Jurbulence & fluctuation
driven fluxes

Meso & macro-scale
distortion of equilibrium
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Focus of TSVV 10 o L

‘t Theory activities ’

with 2 MeV

State.

Evolution of fluctuation spectrum and
EP transport suggest two possible
routes to nonlinear physics: nonlinear
wave-wave interactions and nonlinear
wave-particle interactions.
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Integral modelling (Energetic-particle Workflow)

Toroidal mode numbers of AUGD 39681

- automated processing of 160 time slices based on IDA
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« analyse L-mode,H-mode and transition phases:

beat infamous problem of AE stability sensitivity to
profiles - compare trends instead of single time slices
- compare local and global models

« systematic uncertainty quantification feasible

- applied also to TCV, JET, JT-60SA, ITER, DEMO

EP-Stability WF training course, July 2023
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CONCLUSIONS:

Theory and software stack are developed for burning plasma applications:

gyrokinetic codes, hybrid-MHD codes, integrated modelling
X GPU-enabling and IMASIfication of the key tools (assisted by ACHSs)
X Both tokamak and stellarator plasmas addressed; simulations of complex physics

and in realistic geometries

X Cross-code verification and comparisons to theory carried out
o Validation on ASDEX-Upgrade, JET, TCV, W7-X are ongoing
o Dissemination via publications (wiki, indico), EUROfusion‘s Gitlab (including

code documentation), and training (Energetic-particle Workflow)
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