REDUCED TURBULENCE MODELS IN MEAN-FIELD CODES

• RANS(Reynolds-Averaged-Navier-Stokes)-like models developed as intermediate steps in hierarchy of models: 2 flavors developed with different methods but basically the same ingredients [R. Coosemans, CPP 2022] [S. Baschetti, NF 2021]

$$\frac{\partial}{\partial t}\bar{n}\kappa_{\perp} + \nabla \cdot \left(\overline{\Gamma}_{i}\kappa_{\perp} + \frac{1}{2}\overline{mnV''V_{E\times B}''^{2}} + \overline{\phi'J'_{||}}\right) = \overline{S}_{IC} + \overline{S}_{IC}$$

$$D_{E\times B} \sim \frac{C_{D}\kappa_{\perp}}{\sqrt{\kappa_{\perp}/m_{i}}/\rho_{L}} + C_{S}\left|\nabla\overline{V}_{E\times B}\right| \qquad \chi_{E\times B} \sim D_{E\times B}$$

Applied to WEST (SOLEDGE3X) and C-mod (SOLPS-ITER)

On-going extension to include parallel dynamics, impact of recycling, DW physics...

- $\overline{S}_{||} + \overline{S}_{RS}$
- $_B \sim \eta_{E \times B}$

PROGRESS IN GYROFLUID TURBULENCE MODELLING

- FELTOR code: Gyrofluid plasma turbulence
 - Open source https://feltor-dev.github.io/ 0

[M. Wiesenberger, NF 2020; M. Wiesenberger, CPC 2019; M. Wiesenberger, JCP 2023]

- Current status:
 - Isothermal model for density and parallel velocity 0
 - Realistic magnetic field geometry including X-0 point, triangularity, shear, etc...
 - Fully parallelized and optimized for GPUs Ο
 - Allows stable three-dimensional turbulence 0 simulations of several milliseconds
 - Non-isothermal model with neutrals being 0 implemented
- Recently applied to impact of resistivity on turbulence [M. Wiesenberger, PPCF 2024]

 10^{-4}

0.0

GBS AND GRILLIX TACKLING W7-AS EXPERIMENTS

 $|B|/B_0$

0.9

0.8

 Z/ρ_{S0}

100

50

0

-50

 $-100 \phi = 0$

500

Simulation box

600

 R/ρ_{S0}

700

0.8

0.6

0.4

0.2

- GBS applied to W7-AS
 - Blobs present, cross-field transport dominated by the ExB in the SOL (~experiments)
 - Turbulence is ballooning driven

[courtesy Z. Tecchiolli]

- GRILLIX applied to W7-AS:
 - Shafranov shift observed, as only 0 background vacuum field is prescribed
 - No large scale mode so far 0
 - Small scale field-aligned turbulent structures 0
 - Parallel mode observed, representing 0 discrete symmetry of W7-AS

HDG APPROACH ALLOWS COMPLETE GEOMETRICAL FLEXIBILITY

- Hybrid Discontinuous Galerkin (HDG) approach offers accurate description of magnetic and wall geometries
 - Applied to 2D modelling of dynamic equilibrium from start-up to ramp-down
 - Combined with synthetic 0 diagnostics to ease comparison to experiments

[I. Kudashev, Appl. Sci. 2022]

[*M. Scotto, NF 2022*]

- HDG approach extended with fluid neutrals model
 - Applied to WEST from attached to 0 detached plasma,
 - Estimate W sputtering all along 0 the wall

[I. Kudashev, Frontiers in Phys. 2024]

UP-TO-THE-WALL HIGH POWER ITER SIMULATIONS

- After low power PFPO plasmas [N. Rivals, submitted to NF], SOLEDGE3X simulations up-tothe-wall for high power seeded FPO Scenario
 - First self-consistent W gross-erosion 0 evaluation for ITER rebase-Ining

[S. Sureshkumar, NME 2024]

SELF-CONSISTENT NEUTRALS RECYCLING IN GRILLIX

- Advanced fluid neutrals model implemented in GRILLIX
 - Highlights importance of self-consistent recycling boundary cond. 0

[K. Eder et al, submitted to PPCF]

TURBULENCE IN H-MODE CONDITIONS

- GRILLIX extended to tackle **H-mode conditions** (high β , low v_{\star})
 - $_{\circ}$ $\,$ Full-EM model with flutter terms incl. for current
 - Landau-fluid trans-collisional closure [C. Pitzal et al, PoP 2023]
- Applied to ASDEX-U H-mode modelling:
 - Full-EM model required to recover experimental power
 - Landau-fluid does not change much w/r to flux-limited SH

[W. Zholobenko et al, NF 2024]

- Full **EM model** (incl. Flutter) implemented in SOLEDGE3X
 - Strong impact on turbulent transport, in line 0 with findings in GRILLIX
- Allows modelling of 3D perturbed magnetic configuration (e.g., RMPS)
 - Applied to modelling of ripple in WEST

[*R*. *Düll et al, NME 2024*]

RECOMMENDATIONS FOR MEAN-FIELD MODELLING

- Preliminary recommandations for mean-field codes from simulation in detached conditions:
 - 5-fold increase of diffusion coefficients 0
 - Issue with classic transport model for heat 0
 - Different transport models behave better 0

 $\frac{\frac{\Gamma_{n}}{n}}{\frac{n_{e}}{\Gamma_{E\alpha}}} = -\begin{bmatrix} D_{nn} & D_{nT,\alpha} \\ D_{nT,\alpha} & \frac{3}{2}D_{nn} \end{bmatrix} \begin{bmatrix} \frac{\nabla n_{e} \cdot n^{*}}{n_{e}} \\ \frac{\nabla T_{\alpha} \cdot \vec{n}^{\psi}}{T_{\alpha}} \end{bmatrix}$

[V. Quadri et al, PhD Thesis 2024]

Detached $X_e\left[\frac{m^2}{s}\right]$

- Zhdanov closure (non trace impurities) implemented in GBS and SOLEDGE3X:
 - Applied to D-T-Ne cases => D/T imbalance in divertor
 [H. Bufferand, PPCF 2022]
 - Extension to 3D turbulence raises questions on tractability of numerical algorithm
- Common validation against dedicated TCV pulse in highdensity regime started

- Carry on upstream development of models and numerical methods where remaining issues identified:
 - Sheath boundary conditions in trans-collisional conditions for MS plasmas 0
 - Reduced turbulence models (incl. implementation in SOLPS and SOLEDGE3X) Ο
 - More advanced fluid neutrals models, including boundary conditions 0
- Pursue code acceleration:
 - upscaling towards large scale machines (with ACH) 0
 - strategy to get 3D turbulence simulations to convergence in reasonable time 0
- Progressive **mutualization** of specific parts of codes:
 - E.g., kinetic neutrals solvers from GBS and SOLEDGE3X
- Progressively stronger focus on **confrontation to experiments** in relevant regimes in relation with WPTE:
 - Detachment: TCVX23 experiment as reference case, also XPR on WEST / AUG 0
 - Includes development and usage of synthetic diagnostics based on IMAS 0
 - Confrontation to stellarator experiments (W7-AS then W7-X) 0
 - Propose key recommandations to mean-field community on transport model Ο