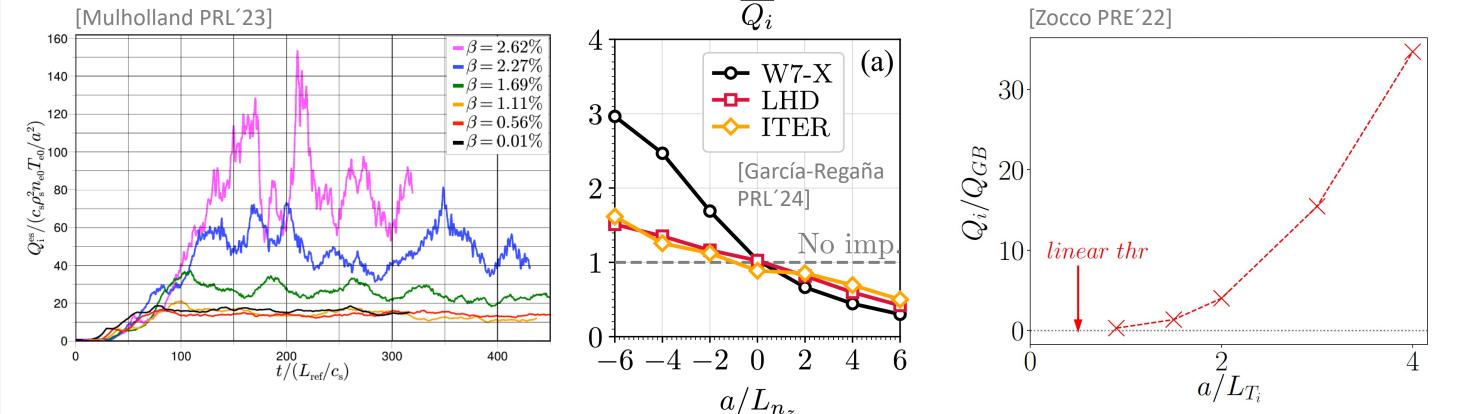


TSVV13 Stellarator Turbulence Simulation: Progress, status and plans

J. M. García-Regaña¹, A. Bañón Navarro², M. Barnes³, P. Mulholland⁴, J. Omotani⁵, J. H. E. Proll^{4,6}, J. Riemann⁶, E. Sánchez¹, J. L. Velasco¹, A. Zocco⁶ In collaboration with: K. Aleynikova⁶, R. Kleiber⁶, M. J. Pueschel⁷, F. Wilms²,

G. Acton³, H. Cu-Castillo², F. J. Escoto¹, D. Fernando², M. Morren⁴, L. Podavini⁶ and H. Thienpondt¹


¹Laboratorio Nacional de Fusión, CIEMAT, 28040 Madrid, Spain ²Max-Planck Institut für Plasmaphysik, 85748 Garching, Germany ³Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK ⁴Eindhoven University of Technology, 5600MB Einhoven, The Netherlands ⁵Culham Science Centre, Abingdon, Oxon OX14 3DB, UK ⁶Max-Planck-Insititut für Plasmaphysik, 17491 Greifswald, Germany ⁷Dutch Institute for Fundamental Energy Research, 5612 AJ Eindhoven, The Netherlands

Motivation

- □ The understanding of turbulence in stellarators has been traditionally behind tokamaks' due to::
 - The computational cost of handling 3D magnetic geometries.
 - The limitations of the flux tube approach for stellarators.
- □ At the time TSVV13 was proposed, certain aspects of turbulence remained largely unexplored: impurity transport; particle transport; electromagnetic turbulence; and the interplay between neoclassical (NC) and gyrokinetic (GK) physics.

Validation and theory

The TSVV13 work on theory and validation have been strongly driven by aspects insufficiently addressed in the context of gyrokinetic turbulence in stellarators.

Key deliverables

- Set of stellarator gyrokinetic codes verified against each other, validated against stellarator and 3D tokamak experiments.
- Assess the relative weight of neoclassical and turbulent transport.
- Address the interaction between neoclassical and gyrokinetic turbulence.
- Develop reduced models.

TSVV13 team and codes

Member or code	Research Unit	Period	Commitment (PM/year)	Code	Main characteristics				
José M. García-Regaña	CIEMAT	2024-2025	(PW) year) 12	GENE	δf gyrokinetic code, flux tube for stellarator				
Edilberto Sánchez	CIEMAT	2024-2025	6		geometry, electromagnetic, coupled to				
José Luis Velasco	CIEMAT	2024-2025	6		KNOSOS+TANGO, incl. collisions.				
Alejandro Bañón-Navarro	MPG (IPP-Garching)	2024-2025	6	GENE-3D	δf gyrokinetic code, flux tube (FT), full flux surface				
Alessandro Zocco	MPG (IPP-Greifswald)	2024-2025	6		(FFS) and radially global (RG), electromagnetic,				
Jörg Riemann	MPG (IPP-Greifswald)	2024-2025	6		coupled to KNOSOS+TANGO, incl. collisions.				
Michael Barnes	CCFE (Uni. Oxford)	2024-2025	6	stella	δf gyrokinetic code, flux tube and full flux surface				
John Omotani	CCFE (Uni. Oxford)	2024-2025	6	SCELLA	electromagnetic, incl. collisions. radially glob				
Josefine H. E. Proll	DIFFER (Uni. Eindhoven)	2024/2025	3/0		version for tokamak geometry, coupled to				
Paul Mulholland	DIFFER (Uni. Eindhoven)	2024/2025	3/3		neoclassical code SFINCS.				
Maikel Morren	DIFFER (Uni. Eindhoven)	2024/2025	0/3						
Unallocated	t.b.d.	2024/2025	0/6	EUTERPE	δf gyrokinetic code, radially global code (annulus				
ACH Tasks					choice possible), electromagnetic, incl. collisions.				
EUTERPE	ACH-MPG	2024/2025	5/12*		Neoclassical simulations enabled.				
stella	ACH-CIEMAT	2024/2025	6/6*	KNOSOS	δf neoclassical code, coupled to GENE and GENE-3D				
Hanne Thienpondt	TSVV13 support ACH-CIEMAT	2024/2025	0/2*		through TANGO transport solver.				
Total resources			71/80						

Developed within the TSVV13

Team composition and 2025 resource planning as of November 2024

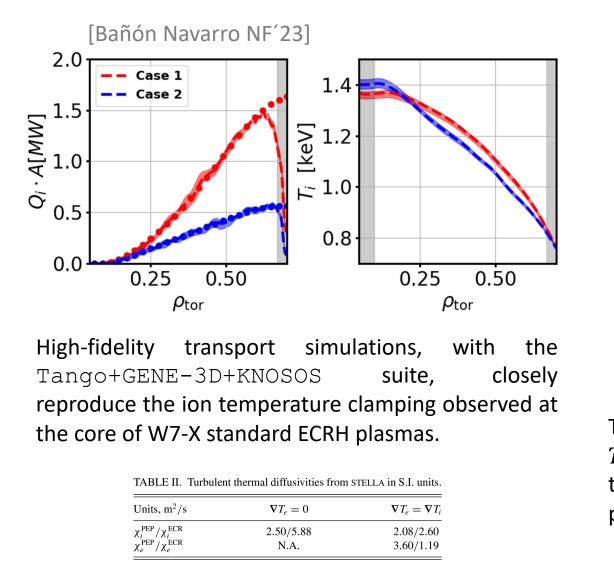
External experts: M. J. Pueschel (DIFFER), Ralf Kleiber and K. Aleynikova (IPP-Greifswald), Felix Wilms (IPP-Garching). **Ph.D. students**: H. Thienpondt and F. Javier Escoto (CIEMAT), Linda Podavini (IPP-Greifswald), Don Fernando and Hugo Cu-Castillo (IPP-Garching), Georgia Acton (U. Oxford).

Code progress status

1081033		J																
		SOFTWARE ENGINEERING			INTERFACES				ννυα			DISSEMINATION		DOCUN	DOCUMENTATION		SUPPORT	
	support ed	rsion ol emented	ftware Ieering Iards	ding lards lished	rformance nization on iystems	er-friendly face	st- ssing and lisation	erface to MAS Data nnary	ecific plans ode cation	de cation es nplished	er-code hmarking nplished	de ation es nplished	-to-date se version e Gateway	inings ded to code	¢h-quality iical mentation	er manual able for iload	sponsive ort team	ols for Iging ort requests

First scans of β in W7-X point out a strong increase of heat losses due to subthreshold Kinetic Ballooning Modes (stKBMs), threatening out scenario performance in future campaigns.

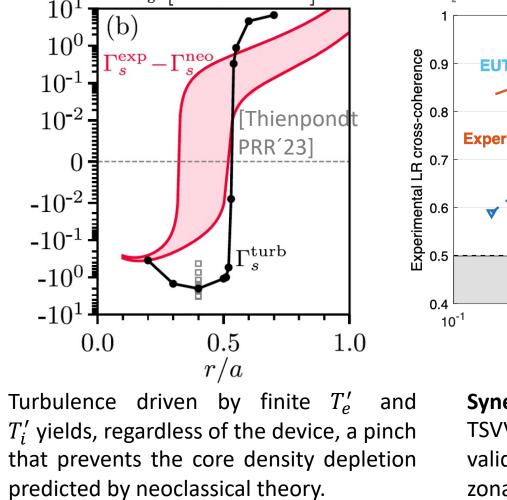
Parametric scans near marginality show the Impurities can contribute to the absence of Dimits shift in W7-X, which reduction or enhancement of heat correlates with a less radially extended losses. The main dependencies have been identified and are found largely turbulent structures.


[Carralero subm.'24]

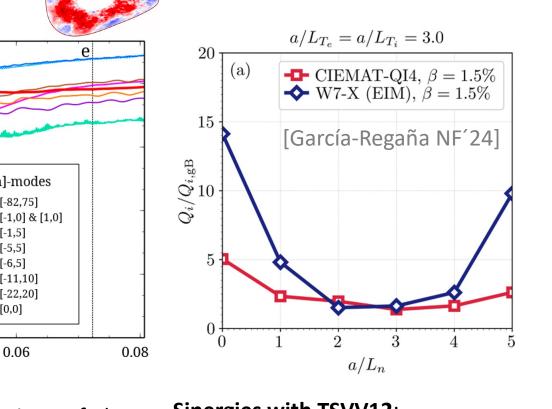
• Examining specific discharges has yielded significant validation achievements and shed light on longstanding issues.

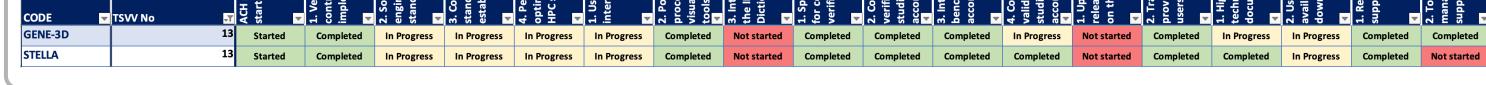
 $\Gamma_{s} \, [10^{19} {\rm m}^{-1}]$

universal

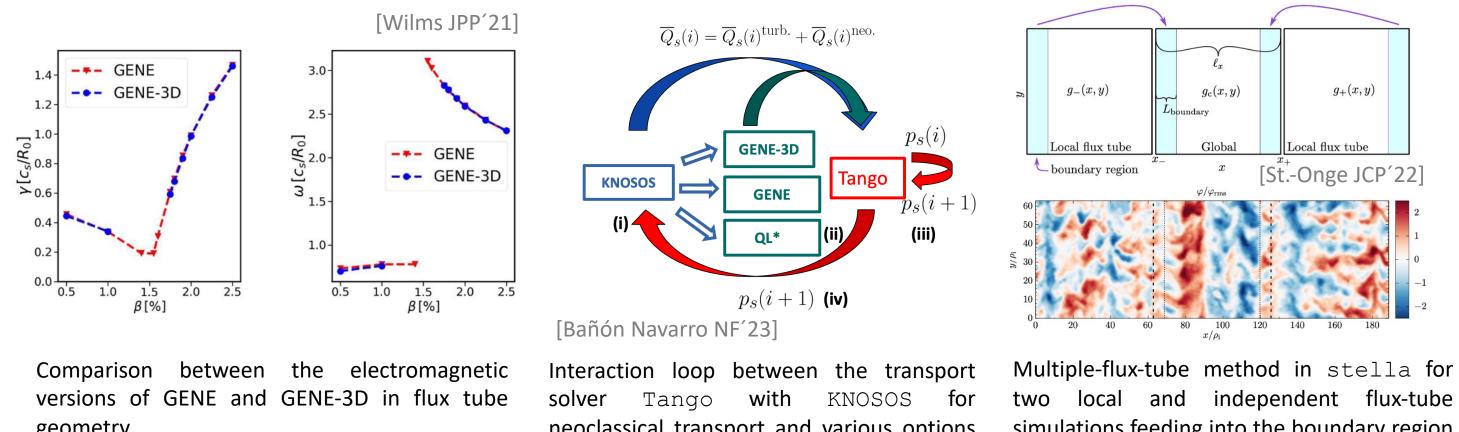

[Riemann subm.'24]

 $Q_i, \nabla T_e = 0$


 $Q_e, \nabla T_e = 0$

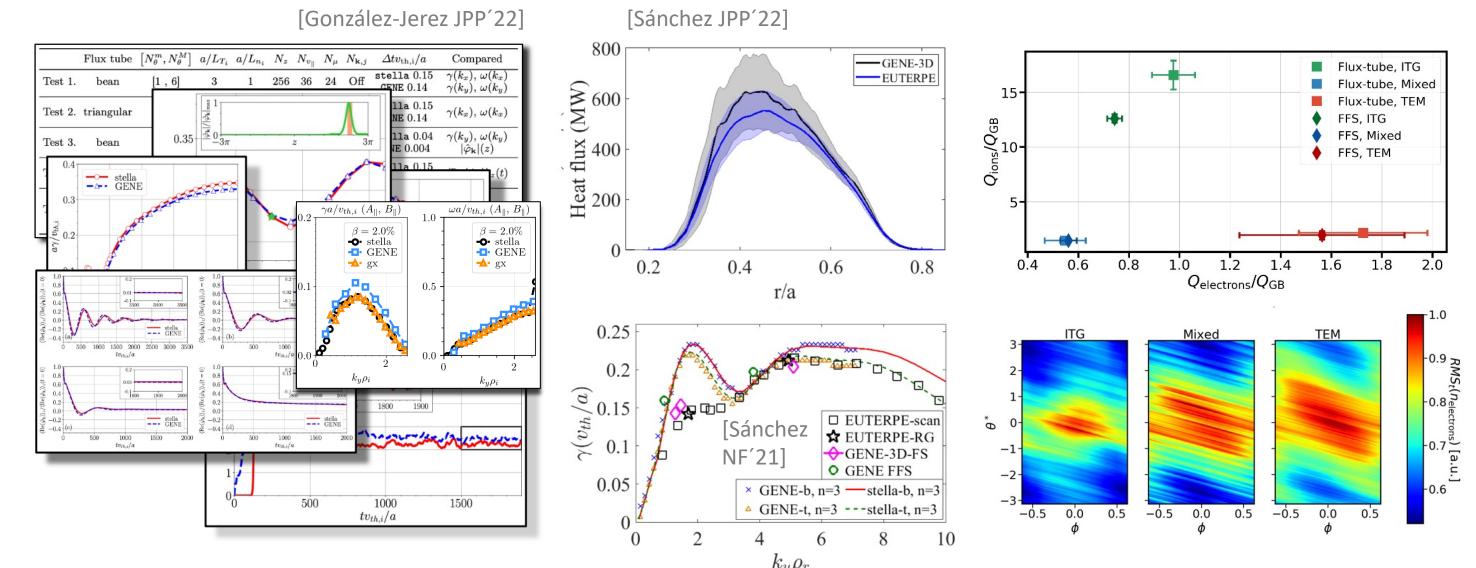

 $- Q_i, \nabla T_e = \nabla T_i$

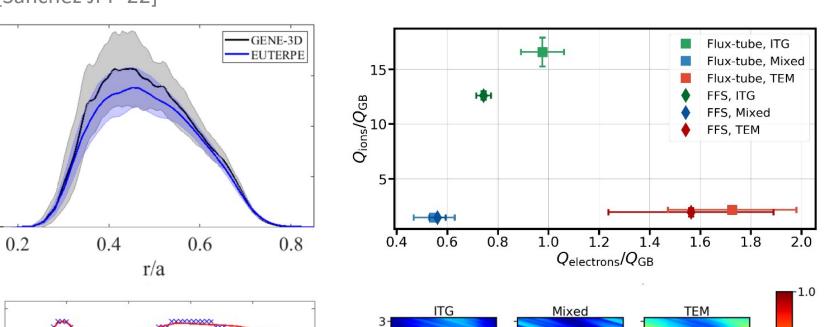
Synergies with WPW7X: from TSVV13, we have contributed to the validation of the first observation of zonal flows through Doppler reflectometry in W7-X.

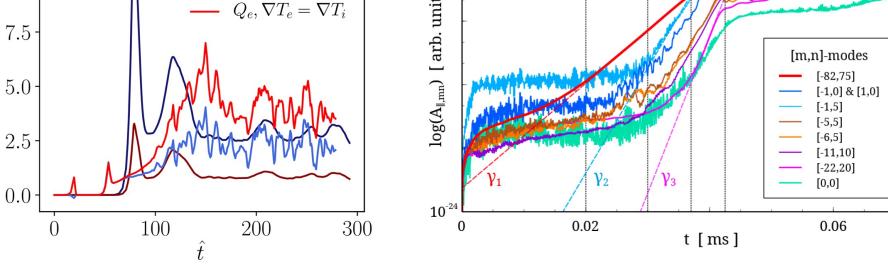

Frequency (kHz)

Code development and verification

• Code development, a central task in the project's early stages, is now at a highly advanced stage.




geometry.


neoclassical transport and various options for turbulent transport.

simulations feeding into the boundary region of a central, global tokamak simulation.

Cross-code verification has been a continuous process from the beginning and remains ongoing as new code capabilities are enabled.

Retaining T'_e results in a moderate Q_i reduction and even an increase in Q_e in pellet-enhancedhigh performance (PEP) W7-X scenarios, questioning previous intrepretations that relied on the approximation $T'_e = 0$.

[Zocco PRR'24] PEP case

12.5-

 $10.0 \cdot$

Synergies with TSVV10: the excitation of longwavelength Alfvénic modes in W7-X stellarator driven by ITG turbulence using nonlinear electromagnetic radially global simulations has been addressed, observing growth rate ratios reminiscent of forceddriven zonal flow generation (γ_1 : γ_2 : $\gamma_3 = \gamma$: 2γ : 3γ).

Sinergies with TSVV12: the TSVV13 the assessment of In turbulent transport in existing configurations [Thienpondt subm. '24] and newly designed stellarators, some with reduced electrostatic turbulence. has become routine.

Work in progress and perspectives for 2025 and beyond

□ All key deliverables have been addressed to varying degrees. The initial focus on code development and verification has moved to a second phase more focused on theory and code validation. • Efforts in code validation and theory will continue, with additional priorities and directions:

	2025	20	026	2027 and bey	ond
, 0	ect of 3D perturbations onfinement group)	in tokamak turbul	lence (communicated to ITPA		
Assess	ment of the effect of n	eoclassical ingredie	ents on turbulent transport		
	Support of 2025 and TSVV13 members in	-	articipation of		
			of EM simulations, with the goal \sim 90% of the work has considered	• •	
		acquired knowled	ilestones of the stellarator program dge. For example, high-Z impurity tungsten wall at W7-X		
				Addressing stellar turbulence simula	

• Additionally, the dissemination of the codes used in TSVV13 will continue in the coming years.

Comparison between flux tube (FT) and Stellarator-base-case proposed by for cross-code **Comparison between GENE-3D** and comparison in the W7-X high mirror configuration GENE-3D full flux surface (FFS) EUTERPE in radially global domain (top) considering multiple instabilities and problem simulations for different type of Comparison between all GK codes within settings. instabilities the TSVV13 for different domains (bottom).

 \Rightarrow Well documented and comprehensive set of comparisons between gyrokinetic codes in 3D geometry (GENE, GENE-3D, stella, EUTERPE, GX, and XGC involved so far) has improved confidence in our codes and our understanding of the impact of the spatial domain (FT, FFS or RG domain).

Summary

2024

- □ In the framework of the TSVV13, substantial development and verification of the main European stellarator gyrokinetic codes (stella, GENE-3D, EUTERPE, GENE) has been achieved, enhancing the capacity and confidence to tackle high-impact stellarator turbulence problems.
- The advent of TSVV13 has significantly improved our understanding in several key areas: bulk and impurity particle transport in stellarators, the relative weight of turbulent and neoclassical transport and their interaction (in progress), predictive transport simulations accounting for turbulent transport have been enabled, the potential impact of electromagnetic effects on turbulence (yet to be thrououghly explored).
- The initial TSVV13 work plan has evolved and expanded towards new objectives and problems, to be addressed in the period 2025-2027 and beyond.

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.