
κ = 1.54

PT
NT

κ = 1.58

κ = 1.50

κ = 1.54
κ = 1.47

κ = 1.51

Major radius [cm]

λSO
LE

D
G

E
q

(a
u)

Top  δ

TSVV-02: Negative triangularity and plasma shaping

Introduction
• L-mode negative triangularity (NT) plasmas 

have been experimentally observed to achieve 
comparable confinement to H-mode positive 
triangularity (PT)

• NT shape blocks H-mode, preventing ELMs
• It is hoped that the NT SOL will be similar to L-

mode as well as “everything else” (e.g. MHD 
stability, fast particle confinement, impurities)

Physics of confinement improvement[1]

• ITG is more stable in NT at any aspect ratio, 
while TEM is less stable at tight aspect ratio

• For ITG, better understand by studying in large 
aspect ratio limit, as geometry only enters GK 
model through FLR effects and magnetic drifts


• In NT, FLR stabilization is stronger and magnetic 
drifts are further from ITG resonance condition[3] 
(identified from linear simulations)


• Explains above parametric dependences and 
can be used to search for shapes beyond NT


• For TEM, finite extent of ballooning mode 
important to see stabilization from NT[4], which 
can also explain dependence on magnetic 
shear[2]
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MHD stability
• Vertical stability worse in 

NT, which looks to limit 
elongation[13,14]

• Minimal direct effect of   
on NTMs, but difference 
between L-and H-mode 
profiles could have impact

• NT blocks H-mode by 
closing access to 2nd 
stability region of infinite-n 
ballooning modes[15,16]
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Parametric dependence
• Large multi-dimensional scan to find interesting 

dependencies that maximize benefits of NT

• NT more helpful at high  , high  , high  , 
and large aspect ratio[1,2]
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ŝ =.8∇T=8

PT
δ=.3
κ=1.4
q=1.4
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 -driven instabilities
• Microtearing modes (MTMs) are often stronger 

in NT, but can be avoided by increasing aspect 
ratio, heating ions, and avoiding double-null 
geometries (as it lowers )[1]

• At standard aspect ratio, higher threshold in NT 
seen for kinetic ballooning modes (KBMs)[5]
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Direct impact of machine size
• PT and NT scale similarly with [6,7] in global 

gradient-driven simulations with ORB5

• Recently ORB5 achieved the first GK flux-
driven PT-NT comparison, which successfully 
recovered the experimental trends for  
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Reduced modeling of DTT[5,8,9,10]

• New “high- ” DTT shape exhibits more of a 
beneficial effect from NT in ASTRA-TGLF

• Biggest effect comes from the very edge
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Fast particles
• ASCOT5 analysis of 

TCV shots indicate 
that, while NBI-driven 
fast ion losses hitting 
FILD diagnostic are 
higher in NT, total 
losses are actually 
~10% smaller

NT power plants optimize differently[14,19]

• NT has no L-H threshold, so no lower limit on 
auxiliary heating power 

• Can calculate optimal  to maximize fusion 
power gain 

Paux
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Q = Pfus/Paux

T (keV) T (keV)

n
(1

019
m

−
3 )

MANTA  Paux = 40 MWMANTA[14] Paux = 10 MW

Future plans
• GK transport modeling of H-mode pedestal 

with artificial NT shape to seek soft transport 
limit (e.g. MTMs)

• Explore promising shapes beyond NT[1,20,21]

• Analyze JET NT discharges
• Predictive SOL simulations with SOLEDGE3X 

to complement GBS
• Reduced modeling of experimental discharges
• Investigate detachment dynamics
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Stiffness studies show little difference[5,11,12]
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