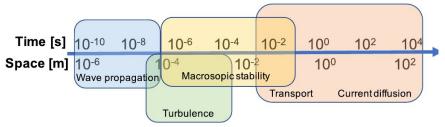


Perspective of HPC challenges in exascale era and beyond

Dr. Gilles Fourestey Executive Director

EUROfusion Advanced Computing Hub EPFL

EPFL Simulations/HPC to model the hot plasma



- Fusion reactors are extremely complex to build
- Numerical simulations are an essential tool to help their design
- But are also **extremely demanding** both in terms of models and resources

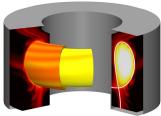
Coupling between different fields...

- Electromagnetic
- Plasma physics kinetic, gyrokinetic,
- Two-fluids,
- MHD models
- Material science plasma-wall interactions
- Wave physics heating systems
- Engineering not included!

with different space/time scales...

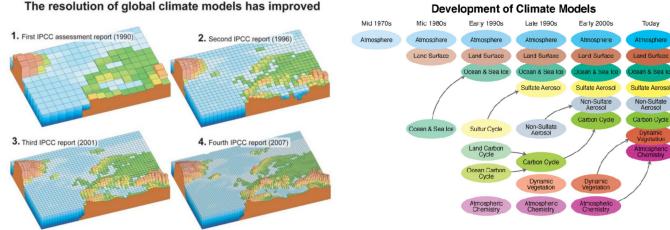
... and HPC motifs and their hardware implementations

Science areas	Multi- physics, Multi- scale	algebra	Sparse linear algebra (SLA)	Spectral Methods (FFT)s (SM-FFT)	N-Body Methods (N-Body)	Grids	Unstructured Grids (U-Grids)	Data Intensive
Nanoscience	X	X	Х	Х	X	X		
Chemistry	X	X	Х	Х	Х			
Fusion	Х	X	Х	Х	Х	X	Х	Х
Climate	х		Х	Х		Х	Х	х
Combustion	X		Х			Х	Х	X
Astrophysics	X	X	Х	Х	X	X	Х	X
Biology	X	X					Х	X
Nuclear		Х	Х		X			X
System Balance Implications			Memory	High Interconnec Bisection bandwidth	High tPerformance Memory	High Speed CPU, High Flop/s rate	Irregular Data and Control Flow	High Storage and Network bandwidt


Exascale: more is more... EPFL

High-Fidelity Simulations:

- Better capture spatial and temporal scales
- Enhanced resolution
- Improved accuracy
- Multi-Physics simulations



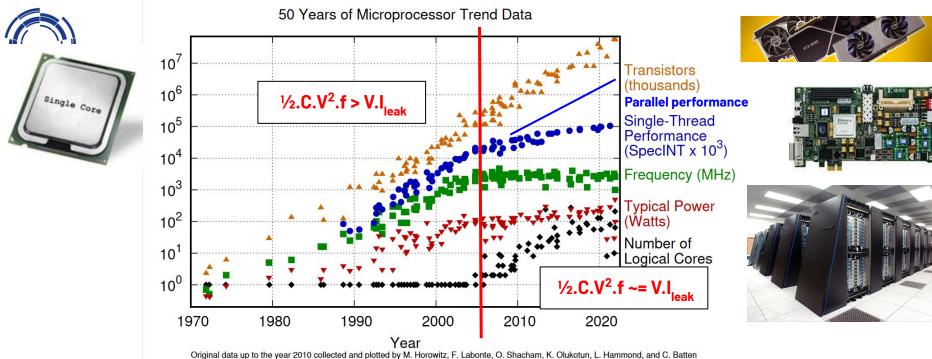
JT-60SA: 100x TCV **10 Petaflops**

DEMO: 5000x TCV 1Exaflops

Today

Unprecedented level of heterogeneity EPFL

- GPUs are dominating the Top500
- but the CPU/GPU combo is rarely the same vendor-wise
- And there is more to come:


	Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
	1	Prontler - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Stingshot-11, HPE D0/E/S/CJAR Hidge National Laboratory United States	8,699,904	1,206.00	1,714.81	22,786
intel. intel.	2	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 520 2.46Hz, Intel Data Center GPU Max, Slingshot-11, Intel DOE/SC/Argonne National Laboratory United States	9,264,128	1,012.00	1,980.01	38,698
	3	Eagte - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure Microsoft Azure United States	2, <mark>073,600</mark>	561.20	846.84	
arm	4	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.26Hz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
	5	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Stingshot-11, HPE EuroHPC/CSC Finland	2,752,704	379.70	531.51	7,107
	6	Atps - HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, NVIDIA GH200 Superchip, Slingshot-11, HPE Swiss National Supercomputing Centre (CSCS) Switzerland	1,305,600	270.00	353.75	5,194
ALPS T	7	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.66Hz, NVIDIA A100 SXM 64 GB, Quad-rail NVIDIA HDR100 Infiniband, EVIDEN EuroHPC/CINECA Italy	1,824,768	241.20	306.31	7,494
	8	MareNostrum 5 ACC - BullSequana XH3000, Xeon Plainum 8460Y+ 32C 2.3GHz, NVIDIA H100 64GB, Infiniband /NDR, EVIDEN EuroHPC/BSCI Spain	663,040	175.30	249.44	4,159
	9	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infinitsand, IBM D0E/SC/DaR Ridge National Laboratory United States	2,414,592	148.60	200.79	10,096
intel , 🐼 nvidia.	10	Eos NVIDIA DOX SuperPOD - NVIDIA DOX H100, Xeon Platinum 8480C 56C 3.8GHz, NVIDIA H100, Infiniband NDR400, Nvidia VVIDIA Corporation United States	485,888	121.40	188.65	

Rmax

Rneak

Power

EPFL Where We Are: The End of Dennard's Scaling

New plot and data collected for 2010-2021 by K. Rupp

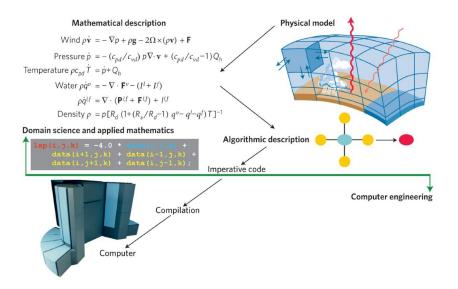
Frequency Scaling Era, the "free lunch"

- Perf/J increasing
- Memory throughput = arithmetic throughput
- ILP is exposed to programmers

Frequency scaling is dead, Energy Efficiency is king

- Power wall: Perf/J is constant
- Memory wall (mem t.p. < arithmetic t.p.)
- ILP wall, now TLD, DLP is taking over with highly specialised accelerators (GPUs...)

EPFL


Unprecedented Heterogeneity Means Unprecedented Software Challenges

Rapid evolution of computing hardware leads to:

- Frequent rewrite of software
- Unsustainable development efforts
- A suboptimal use of the hardware

Either:

- Focus on a specific hardware target to get maximum performance
- Or go portability/
- A good trade-off: separation of concern between front-end (science) and back-end (software/hardware)

Programming revisited, Thomas C. Schulthess(CSCS)

Nature Physics - 2015

EPFL Bridging the Productivity Gap

Adopt High-Level Programming Languages and Frameworks:

- **Use of High-Level Languages**: Languages like Python, Julia, and modern C++ offer more abstraction and ease of use compared to traditional HPC languages like Fortran (which is lagging behind) or C.
- **Parallel Programming Libraries**: Utilize libraries such as MPI for distributed computing, OpenMP for shared-memory parallelism, and CUDA or SYCL for GPU programming to manage complexity.

Leverage Domain-Specific Languages (DSLs) or Reusable Libraries:

- **DSLs** can simplify programming by providing constructs tailored to specific domains, hiding low-level implementation details.
- **Mathematical Libraries**: Leverage optimized libraries like BLAS, LAPACK, and PETSc for common computational tasks.

Enhance Collaboration and Code Sharing/Dissemination:

- Version Control: Use Git and platforms like GitLab dedicated for collaborative development.
- **Open-Source Contributions**: Share improvements and adaptations with the community to foster collective progress.

EPFL Bridging the Productivity Gap

Implement Verification and Validation (V&V):

- **Code Verification**: Regularly test code against analytical solutions or benchmarks to ensure correctness.
- **Model Validation**: Compare simulation results with experimental data to validate models.

Apply Uncertainty Quantification (UQ):

- **UQ Tools**: Integrate UQ methods to assess the impact of input uncertainties on simulation outcomes.
- Statistical Analysis: Use probabilistic approaches to quantify confidence levels in results

The EUROfusion Standard Software is a great framework to bridge the gap!

EPFL Bridging the Productivity Gap

Co-design:

- Optimization of software and hardware simultaneously to meet requirements
- Foster close collaborations between hardware architects, software developers and domain scientists

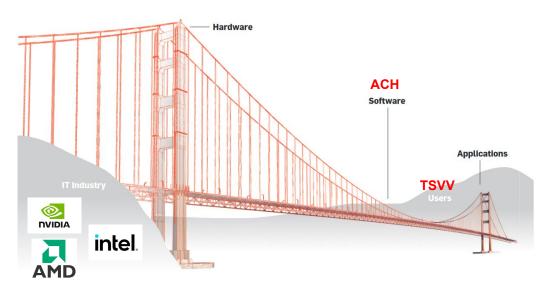
More attention to compiler technologies:

- Automated code tuning
- Energy-efficient algorithms (specialized LLVM IR/backends...)

Massive energy consumption:

- Energy consumption will go up as performance will increase
- Energy-efficient algorithms must be developed to circumvent the end of Dennard's scaling (e.g. data locality to avoid data movement)

I/O bottlenecks:


- Massive data generation
- Imbalance and data read/write bottlenecks
- Filesystem scalability

EPFL It's Dangerous to Go Alone...

...but the ACHs are here to help!

contributed articles

A View of the Parallel Computing Landscape

"Writing programs that scale with increasing numbers of cores should be as easy as writing programs for sequential computers."

Thank you!