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Computationally expensive models with uncertain code parameters are 

ubiquituos in magnetic confinement fusion energy research
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Due to the uncertain code parameters, a single forward simulation is rarely 

sufficient to actually quantify the prediction uncertainty

Given limited resources of wall clock time or HPC hours, it is not tractable to simply simulate 

all possible model configurations. Therefore, the question is how to best use the available 

resources to optimally quantify the uncertainties?

Common problem statement
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Due to the uncertain code parameters, a single forward simulation is rarely 

sufficient to actually quantify the prediction uncertainty

Common problem statement

Forward UQ ~ Uncertainty propagation

Probability 

distributions 

of code parameters θ

Computationally 

expensive model 

y = f(θ, Φ, ε) 

Distributions of 

model 

predictions y

Input Model Output

• Forward UQ is typically needed for addressing the confidence interval for a model prediction: 

Given the input & code uncertainties, how likely it is that the prediction falls within the 

tolerance of the system, such as heat load limit on divertor plate?

• Inverse UQ is typically needed for model validation: Is the model able to reproduce 

experimental observations with physically valid input parameters?

Given limited resources of wall clock time or HPC hours, it is not tractable to simply simulate 

all possible model configurations. Therefore, the question is how to best use the available 

resources to optimally quantify the uncertainties?

Inverse UQ ~ Parameter calibration
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The inverse mapping for θ is defined only implicitly through the 

forward model

• With computationally expensive numerical models:
➢ Given θ, y can be computed with the forward model (potentially 

including a stochastic term)

➢ Given y, there is no direct computational model to determine θ

➢ We will use Bayesian inference to establish probability 
distributions for θ, given samples of (θ, y)

θ y

Computationally expensive 

model y = f(θ, Φ, ε) 
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Bayesian inference (BI) algorithms provide a principled approach to quantify 

the uncertainty for the state of the investigated system, given available data

𝜋 𝜃

Prior belief

Likelihood

𝐷Measured data

Posterior belief

𝜋 𝜃|𝐷 ∝ 𝑃 𝐷|𝜃 𝜋 𝜃   

𝑃 𝐷|𝜃

Experiment

Simulation

Simulation, input 𝜃

Distance ∝ 𝑃 𝐷|𝜃

State of high uncertainty State of low uncertainty
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𝜋 𝜃
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Likelihood
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State of high uncertainty State of low uncertainty

• Typically the likelihood is not available in closed-form when operating with complicated models

• Approximate Bayesian Computation (ABC) or likelihood-free techniques are a way to address 

these intractable likelihood problems [J.M. Marin, et al. Statistics and Computing 2012 and references 

therein, https://doi.org/10.1007/s11222-011-9288-2]

• With computationally expensive models, data-efficiency is key to complete the Bayesian 

inference task with acceptable overall computational resources → How to efficiently find the 

combinations of input parameters that best reproduce the experimental observations?

• The forward model is often expensive, not necessarily bijective, does not provide first or 

second order derivatives easily, and the optimization challenge is expected to be non-convex
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Bayesian optimization is a class of optimization methods focused on 

finding a global optimum of a forward model within a search space

Bayesian Inference Bayesian Optimization (BO)

𝜋 𝜃|𝐷 ∝ 𝑃 𝐷|𝜃 𝜋 𝜃   

Establish a posterior distribution for 

uncertain parameters, given evidence 

π(θ|D) 

Conduct Bayesian Inference in the 

space of objective functions to data-

efficiently find the  global optimum

The ability to optimize expensive ”black-box” functions without access to derivatives makes 

BO very powerful.
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A Bayesian optimization algorithm has two main components

1. A probabilistic (surrogate) model of the objective function

2. An acquisition function

Steps of a Bayesian optimization algorithm

Apply acquisition 

function to get the 

next sample point: 

xi

Augment the data 

set: 

{(x1, y1),…, (xi, yi)}

Update the 

surrogate model

See, e.g. [E. Brochu et al. arXiv:1012.2599 https://arxiv.org/abs//1012.2599]

Sample the 

objective function:  

yi = f(xi)
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1D Bayesian optimization example – Find the maximum
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• The code is available at https://github.com/aejarvin/BO_tutorial

’G

’ground truth’

https://github.com/aejarvin/BO_tutorial


1D Bayesian optimization example – Find the maximum
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• The code is available at https://github.com/aejarvin/BO_tutorial

samples

GPR mean

Gaussian process regression as 

probabilistic surrogate model 

• Convenient non-parametric 

probabilistic regression when the 

amount of data is limited

• ’Learn’ model hyperparameters from 

data → gradient based optimization of 

marginal log-likelihood or through 

integration over the model 

hyperparameters (e.g. MCMC)

Acquisition function uses the GPR mean 

and confidence to recommend  new query 

points 

3 samples

More about GPR: Rasmussen, MIT Press 2006

Gaussian Processes for Machine Learning: Book webpage

https://github.com/aejarvin/BO_tutorial
http://gaussianprocess.org/gpml/


1D Bayesian optimization example – Find the maximum
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• The code is available at https://github.com/aejarvin/BO_tutorial

Gaussian process regression as 

probabilistic surrogate model 

• Convenient non-parametric 

probabilistic regression when the 

amount of data is limited

• ’Learn’ model hyperparameters from 

data → gradient based optimization of 

marginal log-likelihood or through 

integration over the model 

hyperparameters (e.g. MCMC)

Acquisition function uses the GPR mean 

and confidence to recommend  new query 

points 

5 samples

More about GPR: Rasmussen, MIT Press 2006

Gaussian Processes for Machine Learning: Book webpage

https://github.com/aejarvin/BO_tutorial
http://gaussianprocess.org/gpml/


1D Bayesian optimization example – Find the maximum
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• The code is available at https://github.com/aejarvin/BO_tutorial

Gaussian process regression as 

probabilistic surrogate model 

• Convenient non-parametric 

probabilistic regression when the 

amount of data is limited

• ’Learn’ model hyperparameters from 

data → gradient based optimization of 

marginal log-likelihood or through 

integration over the model 

hyperparameters (e.g. MCMC)

Acquisition function uses the GPR mean 

and confidence to recommend  new query 

points 

10 samples

More about GPR: Rasmussen, MIT Press 2006

Gaussian Processes for Machine Learning: Book webpage

https://github.com/aejarvin/BO_tutorial
http://gaussianprocess.org/gpml/


1D Bayesian optimization example – Find the maximum
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• The code is available at https://github.com/aejarvin/BO_tutorial

Gaussian process regression as 

probabilistic surrogate model 

• Convenient non-parametric 

probabilistic regression when the 

amount of data is limited

• ’Learn’ model hyperparameters from 

data → gradient based optimization of 

marginal log-likelihood or through 

integration over the model 

hyperparameters (e.g. MCMC)

Acquisition function uses the GPR mean 

and confidence to recommend  new query 

points 

15 samples

More about GPR: Rasmussen, MIT Press 2006

Gaussian Processes for Machine Learning: Book webpage

https://github.com/aejarvin/BO_tutorial
http://gaussianprocess.org/gpml/


1D Bayesian optimization example – Find the maximum
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• The code is available at https://github.com/aejarvin/BO_tutorial

Gaussian process regression as 

probabilistic surrogate model 

• Convenient non-parametric 

probabilistic regression when the 

amount of data is limited

• ’Learn’ model hyperparameters from 

data → gradient based optimization of 

marginal log-likelihood or through 

integration over the model 

hyperparameters (e.g. MCMC)

Acquisition function uses the GPR mean 

and confidence to recommend  new query 

points 

20 samples

More about GPR: Rasmussen, MIT Press 2006

Gaussian Processes for Machine Learning: Book webpage

https://github.com/aejarvin/BO_tutorial
http://gaussianprocess.org/gpml/


1D BO example with interactive sampling button available in GitHub

• The code is available at 

https://github.com/aejarvin/BO_tutorial

• python BO_tutorial_interactive.py launches the 

figure

• The ’Sample’ button executes the case 

marked by red square (recommended by 

acquisition function) and then updates the 

GPR and the figure.
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Bayesian optimization in a challenging multimodal landscape

• Consider an analytical 2D function 

with 3 Gaussian peaks and an 

underlying slope as ground truth

x

y

f(x, y)

Goal: Find maximum of f(x,y)
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Bayesian optimization in a challenging multimodal landscape

• Consider an analytical 2D function 

with 3 Gaussian peaks and an 

underlying slope as ground truth

• Following the gradient of the 

landscape is most likely to lead to the 

second best peak

• In order to find the global optimum, 

the algorithm must explore in region 

that looks not attractive at first
x

y

f(x, y)

Goal: Find maximum of f(x,y)
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Bayesian optimization in a challenging multimodal landscape

x

y

f(x, y)

x

y

• GP with Rational Quadratic kernel

• Upper Confidence Bound Acquisition

• With a simple BO setup, the algorithm stops exploration 

too early and converges to the second best optimum

• After 500 samples, no sample near the global optimum

• This would be difficult to diagnose in higher 

dimensionality search space

500 samples
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Bayesian optimization in a challenging multimodal landscape

x

y

f(x, y)

x

y

• GP with Rational Quadratic kernel

• Upper Confidence Bound Acquisition 

+ 50% fully random samples

• With quite simple BO setup, the algorithm stops exploration 

too early and converges to the second best optimum

• After 500 samples, no sample near the global optimum

• This would be difficult to diagnose in higher dimensionality 

search space

200 samples

• A trivial way to add exploration is to throw in random 

samples (not necessarily optimal strategy)

• Several ways to encourage exploration exist through 

designs of the acquisition functions and surrogate 

models
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Batch BO needed for many practical BO application in model 

validation exercises

• Many numerical models in fusion energy research consume several hours or days of 

wall clock time per simulation → collecting a few 100 samples could take years

• To populate the search space within an acceptable wall clock time, samples need to 

be collected in batch parallel to each other → a batch BO approach is needed

• In Batch BO, a batch of search points is queried at once from the acquisition function

• Batch acquisition functions can be categorized as*:

➢ Value-estimators: use a value function g(x) to predict a place-holder value while waiting for the sample

➢ Explorers: use sequential acquisition for the initial point and fill rest of the batch with exploration

➢ Stochastic: Draw a stochastic sample rather than just optimum from the acquisition function

➢ Penalizers: Apply penalty to sample points too close to each other

➢ Mode-finders: Acquire samples in the modes 

➢ Others: Any other strategy

* N. Hunt, MSc Thesis, ’Batch Bayesian Optimization’, MIT 2020 
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It is quite common for the simulations to fail to converge with some 

parameter configurations

Dealing with sample failure is not trivial:

• Ignoring failed samples is likely to lead to acquisition function recommending sampling 

the failure region again → inefficient

• Representing a failed sample with a place-holder value that is far from optimal 

introduces a discontinuity in the data that is challenging for the probabilistic surrogate 

Chakrabarty, et al. IEEE Press 2021 https://doi.org/10.1109/SMC52423.2021.9658893 

introduced a relatively elegant approach in the paper ’Simulation Failure Robust Bayesian 

Optimization for Estimating Black-Box Model Parameters’, which adds a failure probability 

classifier

1. A failure classifier model to estimate the likelihood of success & failure

2. Surrogate model for the objective function (as in standard BO)

3. An acquisition function that incorporates the failure probability into the BO framework
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Bayesian optimization and inference applications

1. Runaway electron simulations with DREAM

2. Runaway electron simulations with JOREK

3. Reduced lower hybrid current drive model

4. Fitting cross-field transport coefficients in SOL fluid models
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Bayesian optimization explored for current quench simulations for 

a JET plasma with an induced RE beam [Reux PRL 2021]

• Argon massive gas injection 25.4 ms before 

the current spike

• CQ simulated with DREAM [Hoppe CPC 

2021] using fluid model for REs 

➢ Instant thermal quench assumed with post TQ 

Te as an input parameter

➢ RE seed profile given as input

➢ Amount of injected argon known, but the 

fraction that is assimilated is an uncertain input 

parameter

➢ Characteristic wall time (wall conductivity) 

given as an uncertain input parameter 

Published in A.E. Järvinen, et al. 

Journal of Plasma Physics 88 (2022) 905880612

https://doi.org/10.1017/S0022377822001210
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a JET plasma with an induced RE beam [Reux PRL 2021]

• Argon massive gas injection 25.4 ms before 

the current spike

• CQ simulated with DREAM [Hoppe CPC 

2021] using fluid model for REs 

➢ Instant thermal quench assumed with post TQ 

Te as an input parameter

➢ RE seed profile given as input

➢ Amount of injected argon known, but the 

fraction that is assimilated is an uncertain input 

parameter

➢ Characteristic wall time (wall conductivity) 

given as an uncertain input parameter 

Published in A.E. Järvinen, et al. 

Journal of Plasma Physics 88 (2022) 905880612

https://doi.org/10.1017/S0022377822001210

Current quench

JET #95135

RE plateau
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1D Example: Find the post thermal quench Te that minimizes the discrepancy 

between the measured and predicted Ip during the current quench 

DREAM

Experiment

Simple prior P(Te) = U(1.0, 20)

P(Te) 

Evaluate the discrepancy as L1-norm 

between the measured and predicted Ip

• Bayesian Optimization of Likelihood-Free Inference (BOLFI) method of Engine for Likelihood-Free 

Inference (ELFI) Python software package is used [Lintusaari, JMLR, 2018 & Gutmann, JMLR, 2016]
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1D proof-of-principle

• Gaussian process provides a sample-

efficient probabilistic regression 

• Rational quadratic kernel 

used in the GPR

• Lower confidence bound 

acquisition function

• fAR = 15 %, τwall = 5 ms, 

Radially uniform RE seed 

distribution
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1D proof-of-principle
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Extending the search space to 5 dimensions

• Uniform 5D search space

➢ RE seed parameterized as gamma 

distribution pdf with α, β as inputs

10 randomly sampled RE seed profiles

Parameter Lower bound Upper bound

Te (eV) 1.0 20 

fAR (%) 0.001 100

ln(τwall (ms)) 0 7

α, β 0.001 10
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Clear optima are found for Te and τwall in the 5D search space

290 samples

• Global optimum at T ~ 6 eV, 

τwall ~ 3 ms

• Local optimum at T ~ 16 eV, 

τwall > 50 ms

• RandMaxVar stochastic 

acquisition function used    
[M. Järvenpää et al. Bayesian 

Analysis 2019]

• Number of parallel samples 

is 10
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Clearly a better fit to the experimentally measured current evolution 

is obtained with the 5D optimisation 

1D search space 5D search space
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Extending the search space to allow parameterized variation of electron temperature, 

the algorithm is able to match the evolution of the plasma current quite well 

tfinal

Te,initial

Te,final
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Runaway electron simulations with JOREK

E. Nardon, JOREK meeting this week 

Same JET plasma as in 

the DREAM example 
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Runaway electron simulations with JOREK

E. Nardon, JOREK meeting this week 

Same JET plasma as in 

the DREAM example 
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Reduced lower hybrid current drive model

Theo Fonghetti & Emil Amnell
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Reduced lower hybrid current drive model

Theo Fonghetti & Emil Amnell
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Posterior for optimal fupshift values



Reduced lower hybrid current drive model

Theo Fonghetti & Emil Amnell
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Likelihood-free inference to constrain SOL fluid simulations

C.S. Furia, R.M. Churchill, Plasma Phys. 

Control. Fusion 64 (2022) 104003.

https://doi.org/10.1088/1361-6587/ac828d

• Use likelihood-free inference to constrain cross-field 

transport coefficients in UEDGE simulations: D┴, 

Χe┴, Χi┴ → 3x10 parameters (10 values radially)

• Test the Bayesian optimization framework for the 

same example UEDGE case
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Aim to infer cross-field transport coefficients that reproduce a 

given target profile
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Simple 2D example with D┴ & Χ┴ set as 0.5 m2/s 

[A.E. Järvinen, IAEA-FEC 2023]
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Explore the same (30 dimension) case as Furia and Churchill

C.S. Furia, R.M. Churchill, Plasma Phys. 

Control. Fusion 64 (2022) 104003.

https://doi.org/10.1088/1361-6587/ac828d
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Explore the same (30 dimension) case as Furia and Churchill

# samples

D
is

c
re

p
a
n
c
y

Bayesian optimization started 

after 200 randomly sampled cases (stochastic 

acquisition using Thompson sampling)
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Explore the same (30 Dimension) case as Furia and Churchill

# samples

D
is

c
re

p
a
n
c
y

Bayesian optimization started 

after 200 randomly sampled cases (stochastic 

acquisition using Thompson sampling)

ROMP – RSEP (m)

ROMP – RSEP (m) ROMP – RSEP (m)

ne Te

Ti

True value

BO algorithm
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Outlook: From case-based to amortized inference

• The previous discussion has focused on conducting BO for a single input-simulation-output 
combination starting from scratch for each BO task – Case-based inference

• In practice, conducting these searches over variety of experiments and configurations, one ends 
up repeating similar tasks 

• A learning algorithm that is able to generalize and use previous experiences to guide searches 
would be very attractive → called amortized inference – this is much like the human brain is 
argued to operate [Gershman & Goodman, Cognitive Science 2014 https://api.semanticscholar.org/CorpusID:924780]

Radev et al. IEEE 2022 

https://ieeexplore.ieee.org/document/9298920
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Bayesian inference (BI) algorithms provide a principled approach to quantify the 

uncertainty for the state of the investigated system, given available data

• These tools hold the potential to significantly reduce the manual work in parameter 

calibration when validating computationally demanding models for fusion plasmas

• With computationally expensive models, data-efficiency is key to reduce the overall 

CPUh needs → Bayesian optimization (BO) is a way to achieve this → For practical 

BO for computationally expensive model calibration: batch acquisition, failure 

handling, and means to appropriately balance exploitation-exploration

• A broad portfolio of BI and BO projects are being conducted in close connection the 

EUROfusion Advanced Computing Hub (05) hosted by the University of Helsinki

• Outlook: In future the plan is to investigate the applicability of deep generative 

models within the BO workflow to estbalish amortized inference capabilities for 

these tasks – See e.g. Radev et al. IEEE Trans Neural Netw Learn Syst. 2022 BayesFlow: 

Learning Complex Stochastic Models With Invertible Neural Networks | IEEE Journals & Magazine | IEEE Xplore
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Connection to active learning
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• A key challenge in developing machine learning surrogates 

for computationally expensive models is to establish the 

training set

• Training set of ~million simulations with a model that costs 

~CPUh requires about million CPUh 

• In active learning, acquisition function is used to recommend 

sampling the the full model in parts of the parameter space in 

which the surrogate model uncertainty is high

https://arxiv.org/pdf/2310.09024.pdf

• This could be seen BO with the 

objective function to reduce the 

uncertainty globally for the 

surrogate model

https://arxiv.org/pdf/2310.09024.pdf


Model validation challenge: how to rigorously select the free input 

parameters for the model to best represent the investigated system

• Usually, a selection of the input parameters are not well constrainted by the available data 

• Multidimensional optimization or model calibration is needed to find the most appropriate 

combination of input parameters → Leading bottleneck in model validation exercises 

Select the experiment(s) and measurements used in the validation exercise

Conventional validation workflow

Setup the simulation, grid, and initial conditions to represent the experiment

Evaluate remaining discrepancy between the measured and synthetic signals

Adjust the uncertain 

input parameters to 

calibrate the output

Setup the uncertain input parameters

Run the simulation and compare the measured and synthetic signals

Multidimensional optimization
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Human is subjective and inefficient in completing this task:

1. Subjective reasoning for trajectory through the search space

2. Poorly quantified uncertainties

3. Manual input selection and output processing is inefficient

An optimization algorithm to conduct 

this process would be very attractive

• Usually, a selection of the input parameters are not well constrainted by the available data 

• Multidimensional optimization or model calibration is needed to find the most appropriate 

combination of input parameters → Leading bottleneck in model validation exercises 
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Figure 1 in Wu, et al. Nucl. Eng. Des. 2018

https://doi.org/10.1016/j.nucengdes.2018.06.004

Some essential parts of simulating a system with a numerical model

https://doi.org/10.1016/j.nucengdes.2018.06.004


Presently the focus of the project is to use the framework to match the observed 

synchrotron radiation distribution

[A.E. Järvinen, IAEA-FEC 2023]
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• Need to model runaway electron velocity distribution and to generate a synthetic synchrotron 

emission distribution with an orbit-following code SOFT [Hoppe Nuclear Fusion 2018 

https://doi.org/10.1088/1741-4326/aa9abb] 

• A forward pass for a single input takes several hours (vs. ~ minute in the previous study with 

fluid model for REs)

https://doi.org/10.1088/1741-4326/aa9abb
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