

EU – China collaboration on CFETR and EU-DEMO Reactor Design 4th Technical Exchange Meeting

Overview of CFETR Physics Design

Vincent Chan and the CFETR Physics Team 19-21 March 2024, KIT, Karlsruhe, Germany

Outline

- Introducing CFEDR (China Fusion Engineering Demo Reactor) – a logical evolution of CFETR
- * Establishing key physics basis
 - High confinement factor at high f_{GW}
 - Handling transient and steady-state heat load
 - > Stable operation at high β_N
 - > Maximizing alpha heating
 - Achieving tritium self-sufficiency
- BEST as an essential step for CFEDR collaboration opportunities

New China MCF Roadmap (2022)

CFEDR Mission Remains the Same as CFETR

OD Predictions of CFEDR Steady-State and Pulsed Scenarios

CFETR fully non-inductive A=3.12,a=2.5m, R=7.8m, κ=1.65		A.3 2GW SS EC+IC	C.4 3GW Pulsed EC+IC
fusion power(MW)	Pf	2043	2721
Pfusion/Paux	Qplasma	20.4	27.2
Neutron Power at Blanket(MW/m2)	Pn/Awall	1.97	2.62
toroidal beta	Betal		0.030
	Betan	3.25	3.20
DeldP	fbc	0.75	
		1 62	1 11
h lactor over ELIVIT H_net	fabra	1.03 0.0	1.44 0.19
current drive power(MW)	Pcd	86(EC) 14(IC)	78(EC) 22(IC)
plasma current(MA)	lp	13.0	15.0
field on axis(T)	Во	6.5	6.5
Ion/electron Temperature(KeV)	Ti(0)/Te(0)	35/35	35/35
Electron Density(E20/m3)	n(0)	1.08	1.24
Ratio to Greenwald Limit	nbar/nGR	<mark>1.30</mark>	1.30
Zeff	Zeff	2.45	2.45
Power per unit Major Radius(MW/m)	P/R	27.6	35.5
q95 Iter	q95_iter	5.25	4.55
• Both sc	cenarios are advanced ma	des	

Both scenarios are advanced modes
Both require f_{GW}>1

Experimentally Validated Candidates for High Confiement Core – hybrid & high $$\beta_{\rm p}$ mode$

Physics Analysis Based on CFETR 1.5D Design (2020)

	2 beams		1 beams	
	Hybrid	Steady State	Hybrid	Steady State
Pf	940	955	997	1013
Qplasma	9.39	11.17	11.02	11.51
Pn/wall(MW/m²)	0.81	0.81	0.85	0.86
BetaT(%)(thermal/total)	1.85/2.05	1.83/2.06	1.91/2.11	1.89/2.13
BetaN(thermal/total)	2.06/2.28	2.41/2.72	2.12/2.35	2.50/2.81
fbs	0.45	0.68	0.45	0.69
HITER98Y2	1.11	1.29	1.15	1.30
Pcd(NB/EC/HHFW)	100(20+20/35/25)	86(15+15/31/25)	90(20/40/30)	88(20/38/30)
lp	13	11	13	11
Ti(0)/Te(0)	26/31	23/29	27/31	23/29
n(0)	1.29	1.15	1.30	1.16
nbar/nGR	1.08	116	1.08	1.18
Zeff	2.51	2	2.51	2.01
P/R	21.55	25.4	21.31	27.02
q95_iter	5.82	7.32	5.96	7.34
P/PLH (PLH)	1.11(140)	1.40(131)	1.09(141)	1.48(131)
Prad(Psyn)	131(20)	92(23)	135(22)	95(25)
4 hours Volt-sec	180	0	180	0

Use dimensionally similar analysis to project from existing experiments to BEST/CFEDR J.L. Chen

Theoretical Basis for a Tokamak Density Limit

- All focus on edge instabilities
- None identifies f_{GW}=1 as the critical limit

A Plausible Strategy for High H_{98} is to Keep $f_{GW edge} < 1$

Mitigating Transient Heat Load on PFC - Grassy ELM Operation has Many Advantages for CFETR

- ✓ Lower transient heat flux to the first wall (requires ∆W/W_{ped}<<1%)
- ✓ Beneficial impurity cleansing effect
- Broadening of λ_q
- High β_p and intermediate v^* ($f_{GW_{edge}}$ <1) compatible with high confinement, high bootstrap fraction and divertor solution

From CFETR simulation

EAST experiments: grassy ELMs show broader heat flux width due to fluctuation energy density flux

DIII-D Achieved Small/Grassy ELM with High-Performance core

- **Operating in H-mode with** small/grassy ELMs will solve two critical problems:
 - reducing ELM size
- broadening SOL width

- Small/grassy ELMs achieved with the steady-state high-performance hybrid core
 - $\beta_N > 3$, $\beta_p \sim 2$, low collisionality
 - Naturally small ELM (~300 Hz)
 - RMP assists grassy ELM (~600 Hz)
- Divertor detachment is achieved with N₂ injection

- Not yet tested with small arassv ELMs

* X.Q. Xu H.Q. Wang, et al, IAEA FEC 2020

D_a(a.u.)

Grassy ELM

Broadened **Heat Flux Width**

5000

6000

2450kA

Experiments Demonstrated Stable Operation Above No-Wall β Limit

EK & RWM are Stabilized by Viscosity and Kinetic Damping

At high rotation, mode is stabilized at high viscosity $\kappa_{\prime\prime}$ (Landau damping)

At low rotation, mode is stabilized by precessional drift resonance damping of thermal particles alone

- Over a range of rotation frequency, EK and RWM are effectively stabilized by either fluid or kinetic damping
- Error field minimization and staying before the ideal-wall limit are essential

YF Zhao

Ideal MHD Stability of CFETR Scenarios from MARS-F Code

CFETR hybrid mode

Fixed q_a =7.07, scan β_N w/o plasma rotation

- No-wall beta limit: $\beta_{NW} = 2.85$
- Ideal-wall beta limit: $\beta_{IW} = 3.6$

CFETR steady-state

Fixed q_a =10.955, scan β_N w/o plasma rotation

- No-wall beta limit: $\beta_{NW} = 2.25$
- Ideal-wall beta limit: $\beta_{IW} = 3.15$

Based on DIII-D analysis, CFETR steady-state scenario should operate with robust stability above the no-wall β -limit at low rotation

L. Li

End-to-End Simulation of CFEDR Discharge for Disruption Control

Time (s)

- Prevention: keep discharge away from disruptive stability boundaries
- Avoidance: instability event detection and control to avoid disruption
- Mitigation: machine protection for an unavoidable disruption

New Approaches for Fusion Energy R&D with AI Technology

- Base on AI/ML technology, new approaches are developed in establishing plasma simulation, state/parameter estimation models and advanced plasma control algorithms, which accelerate discharge numerical simulation and improve robustness, safety of plasma operation for future fusion reactors.
 - Data-driven plasma modelling
 - Surrogate model of simulator, PDE solver, response model

- Plasma state/parameter estimation
- ✓ Disruption prediction
- ✓ MHD mode recognition

- Advanced control algorithms
- ✓ Reinforcement learning models
- ✓ Self-adaptive control

EAST Density Limit Disruption Prediction and Experimental Validation based on Random Forest

- Calculation time of DPRF is 200~300µs and satisfy the real-time disruption prediction.
- Real-time disruption warning triggers the MGI system, effectively reduces the damage caused by disruptions.

W.H. Hu et al 2021 Nucl. Fusion 61 066034

Alfven Eigenmode Induced Energetic Particle Transport Can Impact Global Energy Confinement and achievable Q_{plasma}

Tritium Self-Sufficiency Imposes Fueling Requirement for High Tritium Burnup Fraction HPI2 modeling of

Compact Toroid Injection System under Development for BEST/CFEDR

- A numerical code has been developed to calculate the CT trajectory in tokamaks based on Xiao's model [C. Xiao et al 1998 NF 38 249]
- > The code is applied to calculate CT trajectory in KTX and ITER
- Code predictions:

- CT can penetrate **beyond KTX plasma** with designed parameters (consistent with experimental observations)

- CT can penetrate beyond ITER magnetic axis with its designed parameters

KTX designed CT velocity is 240 km/s

For penetration to ρ =0.2, BEST designed CT velocity > 400 km/s

CT system to be installed on EAST for testing.

Number of injectors	1
CT diameter	0.2 m
CT density (D+T, 7:3)	4×10 ²² m ⁻³
CT mass	> 1 mg DT
N_{CT}/N_{BEST}	2.7 %
Fueling rate (D+T)	5 Pam ³ /s
Fueling frequency	5 Hz
CT injection speed	400 km/s
Gas trapped in CT	75%
Total CT length	14 m

Mission of BEST

- Q~1 for 100-1000s long-pulse, P_{fus}=20-40MW, steady-state operation
- Q=5-10 for ~10s short pulse, P_{fus} =100-200MW, α -dominant heating
- Q~0.3 for 1-4h, P_{fus}=10-20MW, Tritium breeding and cycling technologies

R(m)

CS: HTS hybrid, TF: LTS CS: 55Vs, up to $I_p \sim 7.5$ MA, $B_{t0} \sim 6.15$ T, reaching $q_{95} \sim 4.0$

BEST can Significantly Mitigate the Risks for CFEDR

Issue		CFEDR
Achieving high H ₉₈ at high f _{GW}	\checkmark	
Solving heat exhaust problem with a conventional ITER-like radiative divertor	\checkmark	
Operating in a robust ideal MHD and VDE stable regime	\checkmark	
Effective removal of helium ash and impurities while retaining tritium in plasma	\checkmark	\checkmark
Minimizing EP loss due to AE transport at high α fraction		\checkmark
SSO PSI under full metal wall at high heat/particle flux condition (low recycling, retention)		\checkmark
T burning rate (deep fueling) > 1% (better >3%) for T self-sufficiency		\checkmark
Burning plasma physics at Q=10-30		\checkmark

OPPORTUNITIES FOR COLLABORATION

- Projection from existing devices to support accessibility of high confinement need more experiments with W-wall, gyrokinetic modeling of turbulent transport
- Small/grassy ELMs with high performance confirm robust parameter windows, compatibility with detached divertor
- Robust divertor detachment with low W erosion and efficient pumping impurity control, impact of impurity on core performance
- End-to end discharge simulation in progress cross-machine validation of AI/machine learning, integration of diagnostics in simulation platform
- Prediction of AE driven EP redistribution and other EP losses alpha and background interaction on global τ_E, ripple loss and EP hot spots on first wall, high and low q₉₅ operation
- * BEST can test strategy for optimizing tritium burnup fraction pellet fueling requirements, CT
- Reliability of auxiliary heating system design efficient RF coupling versus protection of first wall, impurity generation by RF antennas, near-field absorption and EP production

Backup Slides

Physics Design has to Target Key Mission Elements

For CFETR/CFEDR

- **High performance** Simultaneous achievement of Q=30 and P_{fusion}=3000 MW
- Stable, robust operation with low disruptivity and tolerance to steady-state and transient heat load
- Optimizing design for tritium self-sufficiency
- Anticipating alpha particle impact on achieving high confinement and high gain

ELM Effect on Material Lifetime of CFETR has been Evaluated

Conventional Method for Designing Stability Control

correction to minimize W_{seed} or ECCD feedback.

NTM could be unstable if $W_{seed} > 2cm$ and $\beta_{p,s} > 0.26$

Plasma Disruption Mitigation Systems(DMS) in EAST

MGI system: response time: less than 0.15ms, 2 injection positions

SPI system in EAST was developed in 2022

pellet parameters: D*L=5×5-15mm, <400m/s;</p>

position: middle K port, (R,Z)=(2.5m, 0.38m);

More effective disruption mitigation than MGI;

