4th Technical Exchange Meeting on the China - EU Collaboration on CFETR and EU-DEMO Reactor Design 19-22 March 2024, KIT, Karlsruhe, Germany

Strategy of Materials Simulation and Recent Progress in China

Guang-Hong Lu School of Physics, Beihang University

Thanks Yugang Wang (PKU) Rui Ding (IPP-CAS) Hong-Bo Zhou (BUAA) Yu-Hao Li (BUAA) & NINUM3 team For the contributions to this talk!

Outline

Strategy: Fusion materials simulation

Simulation platform of neutron irradiation

Summary

A Phased Roadmap for the Development of Fusion Reactor Materials in China

			2023-2030 (to BEST/ITER-TBM)		2031-2040 (to DEMO)		2041-2050 (to PFPP)	
	Pure Tungsten	FW & Divertor	 Pure W performance and mass production stability are improved; Complete > 10²⁴m²³ plasma irradiation, 20 MW m² heat load test and >2dpa fission neutron irradiation; Obtain comprehensive key data on mechanical, thermal, irradiation, and H-isotope compatibility. Master the connecting process of W with heat sink, establish the production standard of pure W PFC, Use CRAFT and BEST to evaluate the pure W divertor. 		 -5 dpa fission neutron irradiation, > 1 dpa fusion neutron irradiation; CRAFT, BEST, DEMO test; Optimize the design and manufacturing process and improve the production standard. 		 Determine the PFC manufacturing process in PFPP; Develop PFC on-line detection and <i>in-situ</i> repair technology. 	
PFC	Adv. W-based Materials	FW & Divertor	. Large-scale fabrication process is determined, and cold state performance is completely tested; 2. High-flux plasma irradiation; 3. Complete >2 dpa fission neutron irradiation.		 The output meets the needs of the demonstration reactor, and the production capacity of components is established; -5 dpa fission neutron irradiation, > 1 dpa fusion neutron irradiation; Test of BEST and DEMO. 		 Determine a W-based material for PFPP; R&D of advanced W-based materials for DEMO applications. 	
[/W]	Liq. Metal PFM	FW & Divertor	 Determine the material, structure and process of the first wall of flowing liquid metal; Complete the test and analysis of the basic data of the first wall of flowing liquid metal; High-flux plasma irradiation, substrate material > 2 dpa fission neutron irradiation. 		 Establish manufacturing standards for advanced liquid metal parts; Study the synergistic effect of strong electromagnetism, high heat load and high particle flow; The substrate material > 5 dpa fission neutron irradiation, BEST and DEMO test. 		 Fabrication of advanced liquid metal modules to meet PFPP requirements; R&D of new flowing liquid metal wall structures for commercial applications. 	
PF	Heat Sink	Divertor	 Complete R&D of Cu-based heat sinks, determine the large-scale fabrication process, and complete the cold performance test The connection process of new heat sinks with W was established; >2 dpa neutron irradiation. 		 Determine the process of large-scale fabrication of plates and pipes; >5 dpa fission neutron irradiation, BEST and DEMO test. 		1. Identification of a Cu-based heat sink for PFPP; 2. R&D of new heat sinks for commercial applications.	
Functional M Structural M PFM/PFC	C, other PFM	FW & Divertor	Continue to pay attention to R&D progre		ess and explore breakthrough technology applicatio	ns		
	RAFM Steel	FW & Blanket	 Establish database of cold state (including welding); Complete the certification of materials in nuclear industry and material manuals; Complete 20 dpa fission nd ~5 dpa fusion neutron irradia. 	 BEST/ITER-TBM application evaluation; Component manufacturing and standard certification. 	 Complete 30 dpa fission neutron and 10 dpa fusion neutron irradiation; DEMO test to evaluate its application prospects. 		Complete the application verification on DEMO	
ul M	Adv. RAFM	FW & Blanket	 Fabrication of 100 kg and cold state database; Complete 5 dpa fission neutron irradiation. 	 R&D ton-scale fabrication technology; BEST/ITER-TBM application evaluation; Certification of materials for the nuclear industry. 	 Complete 20 dpa fission neutron and 10 dpa fusion neutron Establish industrial production processes, material manu DEMO test to evaluate its application prospects. 	on irradiation; als and component manufacturing standards;	Complete the application verification on DEMO	
Structura	ODS Steel	FW & Blanket	 Ton-scale fabrication, complete cold state database; 5 dpa fission neutron irradiation and preliminary database; Establish an additive manufacturing blanket process. 	 Ton-scale industrial production, standardization system and quality certification; Establish standard connection technology. 	 Complete the certification of materials in the nuclear industry and the establishment of material handbook, and component manufacturing standards; 20 dpa fission neutron and 10 dpa fusion neutron irradiation; DEMO is tested to evaluate its application prospects. 		 Irradiation of small specimen of >50 dpa with fusion neutron; Complete the application verification on DEMO. 	Establish a comprehensive database of FRM irradiation and evaluate its commercial application
	V Alloy	Liq. Li Blanket			 According to the requirements of T-breeding Blanket, R&D in a timely manner; Development of 100-kilogram fabrication technology and establishment of cold state database. 			
	SiC	LLDC Blanket	Fabrication process R&D of FCI and performance tests of SiCf/SiC with low thermal and electrical conductivity, strong T resistance, appropriate toughness and radiation resistance of about 100 kg were completed.	 Industrial production process and specification; BEST-TBM application evaluation; ~5 dpa fission neutron irradiation. 	I. Complete 10 dpa fission and 5 dpa fusion neutron irradiation; 2. Compatibility of liquid multiplier materials; 3. DEMO is tested to evaluate its application prospects.	Fabrication process of SiC/SiC composites with about 100 kg of nuclear-grade pure silicon carbide, near-stoichiometric ratio, high thermal conductivity, high strength and toughness radiation resistance and gas-tightness.	 Irradiation of small specimen of >50 dpa with fusion neutron; Complete the application verification on DEMO. 	Establish a comprehensive database of FRM irradiation and evaluate its commercial application
	Be	Solid Blanket	 Master the fabrication process, mass production capacity, an BEST/ITER-TBM application evaluation; 	d reduce costs;	 Complete the certification of materials in the nuclear ind 10 dpa fission and 5 dpa fusion neutron irradiation; 	 Complete the certification of materials in the nuclear industry and the establishment of material handbook.; 10 dpa fission and 5 dpa fusion neutron irradiation; 		
V	Be Alloy	Solid Blanket	3. Complete 5 dpa fission neutron irradiation.		 DEMO is tested to evaluate its application prospects. 		2.2.50 upe massion neuron in editation per los manee assessment.	
al N	Li Ceramics	Solid Blanket	 Ton-scale mass production capacity, and reduce costs; BEST/ITER-TBM application evaluation; Complete 5 dpa fission neutron irradiation. 		 Compilet the certification of materials in the nuclear industry and the establishment of material nandbook; I old pa fission and 5 dp attision neutron irradiation; DEMO is tested to evaluate its application prospects. 		DEMO engineering test under actual working conditions, TBR>1; 2, > 30 dpa fission neutron irradiation performance assessment.	
jn;	Pb-Li Liq	Liquid Blanket	 Corrosion of structural materials and retardation technology; Effect of 5 dpa fission neutron irradiation on material compa 	tibility and hydrogen isotope behavior of	 Certification of materials in the nuclear industry, material handbook, and establish industrial production processes; 10 dpa fission and 5 dpa fusion neutron irradiation; DEMO is tested to evaluate its application prospects. 		 DEMO engineering test under actual working conditions, TBR>1; > 30 dpa fission neutron irradiation performance assessment. 	
tio	FLiBe Molten	Liquid Blanket	structural materials; 3. Liquid metal flow and MHD effects.					
JCI	T Barrier	FW & Blanket	 Master the fabrication process, PRF at 500°C > 1000; >5 dpa fission neutron irradiation and evaluation of performance. 	ance.	 Certification of materials in the nuclear industry, material handbook, and establish industrial production processes; DEMO is tested to evaluate its application prospects. 		DEMO engineering test under actual working conditions; 2. > 20 dpa fusion neutron irradiation performance assessment.	
n	Shielding M	VV	 Master the engineering fabrication process of radiation shiel R&D of new high-performance radiation shielding materials 	ding materials and components for BEST;	 BEST/DEMO test under actual working conditions; R&D on industrial fabrication process and performance of new shielding materials. 		DEMO engineering test under actual working conditions	
	Diagnosis M	First Mirror, etc	 Neutron/gamma irradiation, plasma sputtering or high heat le Determine the diagnostic materials for the fusion experimen 	bad assessment; tal reactor.	BEST/DEMO engineering test and in-situ cleaning or		repair technology research under actual working conditions	
Irradiation Platform		Fusion N Source	 Build a small fusion neutron source and 5-10 dpa fusion neutron irradiation for small specimen; Completed the engineering design of fusion neutron source and started construction. 		 Complete 5-10 dpa fusion neutron irradiation of small specimen, and verify them with computational simulation; Using the DEMO and fusion neutron source, 5-10 dpa irradiation for important components; Upgrade the fusion neutron source, and start the construction of a medium-sized fusion neutron source. 		 Irradiation and evaluation of small specimen of 20-50 dpa; I0-20 dpa Irradiation and evaluation of small components such as blanket with low-power DEMO reactor; Irradiation of small specimen of 60-80 dpa. 	
		Fission N & Triple-Ions	 10-20 dpa fast neutron irradiation; Establish equivalent experimental methods for fusion, fission neutron and ion irradiation; Establish a national standard for small specimen testing. 		 20-30 dpa fission neutron irradiations; Establish evaluation criteria for FRMs based on fission neutron and triple ion irradiation. 		Systematical fission neutron irradiation (30 dpa) for different new materials to improve the irradiation performance data of various FRMs.	
		High Heat Load	 Build the highest power electron gun and high heat load test platform; Complete the high thermal load test of the full-size test piece of divertor and blanket components. 		 Design and build a high heat load test platform in the hot cell; Evaluate the performance and life of the divertor and blanket components. 			
		Plasma Bombard	 Build a linear plasma device with the highest parameter level in the world; Complete the plasma irradiation + steady-state heat flux synergy test of materials and modules; Establish a screening standard for the plasma irradiation resistance of the FW material. 		 Design and build high-flux plasma irradiation conditions that can accept neutron irradiation activated samples; Build a high-flux plasma irradiation facility that can use gram-scale tritium. 		I. Plasma irradiation of high-dose fusion neutron irradiation material/component module: Build advanced PPC full-scale module large-beam area plasma irradiation conditions; Verify PFC in-situ repair technology.	
Simulation Platform		Fusion vis Fission	 Establish the relationship between fission and fusion neutron irradiation; Simulation and prediction of micro-macro effects of 10-20 dpa fusion neutron irradiation. 		 Establish a material evaluation system that includes organizational structure and mechanical and thermal properties; Fusion neutron irradiation simulations of FRMs in 20-50 dpa. 		1. Simulations of materials with fusion neutron irradiation at 50-100 dpa:	
		PMI	 Simulation of surface morphology evolution under H-isotope To investigate the sputtering etching of the wall surface under 	z/helium plasma synergistic irradiation; er H-He synergistic irradiation.	 Coupling the PSI simulation with the neutron irradiation; Prediction synergistic effects of FRMs under hydrogen-helium and neutron irradiation. 		2. Establish a service performance evaluation and failure analysis system for blanket structural materials and PFMs.	

Roadmap: Fusion materials modeling & simulation

	2020s (to BEST, ITER-TBM)	2030s (to DEMO)	2040s (to PFPP)	
Neutron irradiation	 Establish the relationship between fission and fusion neutron irradiation; Simulation and prediction of micro-macro effects of 10-20 dpa fusion neutron irradiation. 	 Establish a material evaluation system that includes structure and mechanical/thermal properties; Fusion neutron irradiation simulations of FRMs in 20-50 dpa. 	 Simulations of materials with fusion neutron irradiation at 50- 100 dpa; Establish a service performance evaluation and failure analysis system for blanket structural materials and PFMs. 	
Plasma-wall interactions	 Simulation of surface morphology evolution under H- isotope/helium plasma synergistic irradiation; To investigate the sputtering etching of the wall surface under H-He synergistic irradiation. 	 Coupling the PSI simulation with the neutron irradiation; Prediction synergistic effects of FRMs under hydrogen-helium and neutron irradiation. 		

Modeling of plasma-wall interactions

Erosion/Surface morphology/Property degradation/Hydrogen isotopes retention

Integrated modeling for plasma-wall interactions

- Coupling different codes (materials
 - edge core)
 - ► SOLPS PIC ERO/GITR
 - ► ERO/GITR TRIM/MD
 - ► TRIM/MD WALLDYN
 - ► SOLPS ONETWO (core plasma)
- Database:
 - Materials, A&M data
- Code development within integrated frameworks

Modeling of neutron irradiation damage

Defects production & evolution → Property degradation → Materials failure

Knaster et al. Nature Phys 12 (2016) 424-434; Hasegawa et al. J Nucl Mater 471 (2016) 175.

Benchmark of simulation platform

Irradiation Experiments

- More fission neutron irradiation experiments: HFETR, CMRR, SINQ
- Triple beam ion irradiation (H+He+heavy ions synergy)

Facilities

- EAST, HL-3 Tokamak
- CRAFT, BEST
- CFETR
- IFMIF-DONES

Outline

Strategy: Fusion materials simulation

Simulation platform of neutron irradiation

Summary

Investigation of neutron irradiation damage

• Multiscale modeling

Neutron Irradiation of Nuclear Fusion Materials: Multiscale Modeling Platform

• Team Composition

- 12 Universities
- 5 Institutes

• Computing Platform

- National Supercomputing Center Changsha
- Heavy Ion Research Facility at Lanzhou
- National engineering research center for isotope
- National Energy Fast Reactor Engineering
 R&D (Experimental) Center
- China Nuclear Data Center
- State Key Laboratory of Metal Matrix Composites
- State Key Laboratory of Software Development Environment
- Hunan Provincial Key Laboratory of
 Nuclear Equipment Reliability Technology
- Beijing Key Laboratory of Advanced Nuclear Materials and Physics
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education
- Shanghai Cloud Computing Joint Laboratory
- Shanghai Key Laboratory of Scalable Computing and Systems

Research team

Project meeting, Shanghai, September 20, 2023

2018-2023, funded by National Magnetic Confined Fusion Energy R&D Program, MOST

Tasks (5dpa, 2018.12-2023.11)

	Task	PI	Affiliation
Task 1	Structure of primary irradiation damage and hydrogen-helium effect	Deng Huiqiu	Hunan University Shandong University Sichuan University Hebei University of Technology
Task 2	Thermodynamics and kinetic behavior of irradiation defects	Kong Xiangshan	Institute of Solid Physics, Chinese Academy of Sciences University of Science and Technology of China Southwest Jiaotong University
Task 3	Kinetic Monte Carlo simulation of irradiation microstructure evolution	Zhou Hong-Bo	Beihang University Huazhong University of Science and Technology/North China Electric Power University Beijing Institute of Applied Physics and Computational Mathematics
Task 4	Cluster dynamics simulation of irradiation microstructure evolution	He Xinfu	China Institute of Atomic Energy Institute of Plasma Physics, Chinese Academy of Sciences University of Science and Technology Beijing
Task 5	Calculation of mechanical and thermal properties based on irradiated microstructure	Shen Yao	Shanghai Jiao Tong University Dalian University of Technology/Xi'an Jiaotong University

Platform

18 models: Defect evolution and performance prediction

10 potentials: Tungsten-based interatomic potential

4 methods: data transfer

3 databases: Defect production and evolution parameters

13 codes: Neutron irradiation damage simulation

Databases of defect production and evolution

Displacement cascade database

ncludes single	crystal/dislocatio	ns/GBs/H/He
5	462 data records	

Defect property database

模拟结果							+-1814		South States	
Ambedion Nove Mone_Ne Di_Ve Nove_Sold Vec_H Vec_HH Vec_HHe(TR) Tet_Vec_He(TR)						Se(TB)		13	C. C.	W. W
Nano-Void								3	作品登记证书(电子版)	
这样条件。	闭输入Ne数目	(18)HC	ode – U	1达并江运劳运数366del ~	IN STREET, STR					
编号	Welth	Code	泛洲劳迪取Medel	起来尺寸(Lattice sites)	(ERENV)	干均形成器(AV)	顺序结合能(45)	2 登记编号: 统i	登 记 号: 因作登字-:	登记号: 国作登字-2023-A-00190387 数据数
1	1	VASP	798	54	2.81	2.81	nt	作品	作品名称: 钨品界处箱 数据库: 品	作品名称: 钨位银处辐照缺路热力学动力学行为数 作品表明: 文字作品 据先: 位结一空位/印刷型缺陷/弦/氯
2	2	VASP	2922	54	5.72	2.94	-0.11	0	相互作用	相互作用
3	3	VASP	79E	54	8.66	2.89	-0.13	5 fr 8	1: XI: 41044-3480	作 者: 中国科学统首配物质科学研究院 者作仪人: 中国科学统首配物质科学研究院
4	4	VASP	2922	N	11.25	2.81	0.21	0	and the second second	
5	5	VASP	P96	54	13.83	2.77	0.22	51 51	创作完成日期1 2022年	- 創作完成日期: 2022年01月08日 百次发表日期: 2022年01月08日
6	6	VASP	788	54	16.31	2.72	0.33	以上事项,由	以上事項,由中国科 办法》现定,予以登记。	以上事項,由中国科学院合肥物质科学研究院申请,经中国版权保护中心审核,根据《作品自愿登记试行 办法》规定,予以登记。
7	7	VASP	792	34	18.01	2.65	0.51	0 00000		A A A A A A A A A A A A A A A A A A A
8	1	VASP	P96	54	20.65	2.58	4.76			WITH ANALY WITH ANALY
9		VASP	79.0	54	22.75	2.53	0.71	日 登記日期: 二	3000117011 20204	
10	10	VASP	P94E	54	24.75	2.47	0.50	200	Ab .	
× < 1	2 3 195	> 208 ↓	I NE RIME	n A T v			,	D_	Ro	· т. А.К. Анипакания вы

Includes vacancy/SIA/GBs/dislocations/H/He <u>9407 data records</u>

Primary damage

13 annealing moments, 100 times per cascade

闫辐照损伤数据库

联合开发

Website: http://115.25.142.9:8000/database/index

Cascade annealing database

After annealing

ASIPP

软件著作

关于我们

盗源服

Total amount of data

Single crystal: $> 2400 \times 100 \times 13$ data Includes H/He: $> 500 \times 100 \times 13$ data

Neutron Irradiation of Nuclear Fusion Materials: Multiscale Modeling

Validations: Irradiation experiments (W as model material)

HFIR reactor 0.004 dpa @ 363 K 0.02 dpa @ 733 K

Void & dislocation loop (1) number density (2) size Hardness increment

BR2 reactor 0.2 dpa @1073 K

Reproduce void lattice formation process **by neutron irradiation**

He+W ion irradiation 0.5dpa+0.25dpa He: 1.5at%, 0.02 He/dpa

Validation

Validation 1: Neutron irradiation in HFIR 0.004 dpa @ 363 K

Validation (2): Neutron irradiation in BR2 0.2 dpa @1073 K

Validation ③: He+W ion sequential irradiation

Quantifying the mechanical effects of He, W and He + W ion irradiation on tungsten with spherical nanoindentation

Jordan S. Weaver¹⁽⁶⁾, Cheng Sun^{2,3}, Yongqiang Wang², Surya R. Kalidindi⁴, Russ P. Doerner⁵, Nathan A. Mara^{1,6,*}, and Siddhartha Pathak^{7,*}

¹ Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
 ² Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM, USA
 ³ Materials and Fuels Complex, Idaho National Laboratory, Idaho Falls, ID, USA

- W material: Room temperature, 35µm grain size
- He, W, and He+W sequential irradiation,
 0.5dpa+0.25dpa uniform damage region
- He concentration: 1.5at%, 0.02 He/dpa

He+W ion sequential irradiation 0.75 dpa @ 363 K

	He bubbles		Dislocat	tion loop	Void	
	Diameter (nm)	Number density (10 ²³ m ⁻³)	Diameter (nm)	Number density (10 ²³ m ⁻³)	Diameter (nm)	Number density (10 ²³ m ⁻³
ExpHe	1.1	8.5	-	-	-	-
OKMC-He	1.04	5.5	-	-	-	-
CD-He	1.03	9.9	-	-	-	-
ExpHe+W	1.1	9.1	3	3	-	-
OKMC-He+W	1.18	6.94	2.92	2.52	1.49	5.67
CD-He+W	1.04	7.77	3.4	27	1.39	3.7

Prediction CFETR: 5dpa, microstructure

Outline

Strategy: Fusion materials simulation

Simulation platform of neutron irradiation

Summary

- In order to achieve the nuclear fusion energy in 2050s, a clear and phased roadmap for the development of fusion reactor materials in China is produced, including the modelling and simulation of fusion materials.
- We have developed *NINUM3*, a multi-scale modelling platform of materials under neutron irradiation, and *Phase II for larger dose of fusion neutrons* is under design and construction.

Fusion will be ready when society needs it, maybe even a short time before that — Lev Artsimovich, one of the founders of the tokamak