

Development of CFETR/DEMO Divertor Materials and Components at SWIP

Youyun Lian Southwestern Institute of Physics

2024.03.20

4th Technical Exchange Meeting: EU – China collaboration on CFETR and EU-DEMO Reactor Design

Introduction

Development of tungsten PFMs

Development of Cu heat sink

05

W/Cu mock-ups and components

Summary

1. Introduction

ITER water cooled divertor

CFETR water cooled diverter

ITER divertor components

- Development of divertor high-heat flux materials:
- Plasma facing materials ——W base materials
- heat sink materials
 —Cu base materials
- Development of divertor components
- Joining technologies of high-heat flux materials
- Manufacturing and testing technologies of components

W/Cu mockups

核工业西南物理研究院 2. Development of tungsten PFMs

Tungsten

Advantages: high melting point, high thermal conductivity, low sputter yield, high temperature strength... Disadvantages: low-temperature brittleness, recrystallization embrittlement, radiation-induced brittleness, inherent low fracture toughness....

Objective: Developing new advanced tungsten materials to improve the properties.

旅工业西南物理研究院 2. Development of tungsten PFMs Southwestern Institute of Physics

The prepared advanced tungsten alloys

Hot-Swaging W-Y₂O₃/W-K bars 10~20 kg/pc

Hot-Rolling W-Y₂O₃/W-K plates ~20-40 kg/pc

High-energy-rate forging (HERF) W-Y₂O₃/W-K/W-Ta discs

~1 kg/pc

該工业西南物理研究院 Southwestern Institute of Physics 2. Development of tungsten PFMs

The mechanical properties of the swaged tungsten PFMs

2. Development of tungsten PFMs C业西南物理研究院 Southwestern Institute of Physics ENNE

The mechanical properties of the rolled tungsten PFMs

The rolled tungsten materials exhibits a obvious tensile ductiliy

該工业西南物理研究院 Southwestern Institute of Physics 2. Development of tungsten PFMs

The large scale W alloys exhibt high thermal conductivity and recrystallization temperature To obtain the datas of high temperature tensile, creep and mechanical fatigue properties To research the behaviors of W materials under fusion high-heat flux, plasma and neutron irradiation conditions

2. Development of tungsten PFMs 工业西南物理研究院 Southwestern Institute of Physics ENNE

HERFed tungsten PFMs——W-Y₂O₃/W-K discs

核工业西南物理研究院 Southwestern Institute of Physics 2. Development of tungsten PFMs

Tungsten fiber reinforced tungsten matrix(Wf/Wm)

CNNC

 $W_{\rm f}/W_{\rm m}$ material is one of the most promising plasma facing materials for the future fusion reactor.

Green

part

Debinding

Pure W vs. Wf/Wm a)¹⁸⁰⁰ 1500 1200 (c) 900 70123456789801 Strain(%) Wf/Wm 2 Theta(degree Sintering 1200 1400 1600 Temperature(°C) 99.6±0.4 **Relative Density(%)** 99.1±0.3 99.5 ± 0.4

Debinding

Final

part

Sintering

part

Wf/Wm: compress strength: 1530 MPa which plastic deformation 15.8%.

Heater

Powder

extrusion

printing(PEP)

Z-stage

Compared other tungsten alloys, Wf/Wm composite showed excellence at both compression strength and plasticity at the same time.

3. Development of Cu heat sink

Cu alloys are considered as a divertor heat sink for ITER and CFETR/DEMO.

- CuCrZr has excellent thermal conductivity, good mechanical properties and now wildly used as the heat sink for divertor in ITER and the present tokamak
- Improving the properties of CuCrZr: thermal stability, high temperature strength, impact properties, and radiation tolerance

ODS-Cu :High temperature strength, resistance to neutron irradiation, high resistance to softening temperature, etc. Cu-Al₂O₃—Atomization \rightarrow high temperature oxidation \rightarrow sintering Cu-Y₂O₃—Powder metallurgy

ODS-Cu:

Induction melting→ in-situ formation of oxides

3. Development of Cu heat sink

The fabrication route

业西南物理研究院

Southwestern Institute of Physics

ENNE

Amorphous alloys containing oxygen (Cu-Zr-O, Cu-Y-O, Cu-Hf-O)

Casted ingots

Microstructure of Cu-Hf-O ingot

谱图标签。	谱图 9₽	谱图 10-	谱图11₽	谱图 12₽	谱图 13₽
C↔	2.094	1.59 ₀	¢	1.88	1.78 <i>\varphi</i>
0¢	1.794	1.15 ¢	1.10 ¢	¢	0.74
Cu⇔	87.73	92.04¢	92.89¢	96.03₽	93.67 _¢
Hf₽	8.38	5.22	6.01¢	2.09¢	3.81
总量↩	100.004	100.000	100.00¢	100.00	100.00¢

3. Development of Cu heat sink

High-temperatuer microstructure stability and mechanical properties of the Cu-Hf-O alloys

annealled Cu-Hf-O alloys

after annealing for 1 h at different temperatures

ENNE

Next step: Formation mechanism of dispersed particles. Optimiztaion of the preparation parameters Preparation of large-scale ingots

4. W/Cu mock-ups and components

• Development of joining technology

1.市南物理研究院

Southwestern Institute of Physics

CNNC

 Preparation and HHFT of small scale mockups with advanced tungsten materials

4. W/Cu mock-ups and components

• Preparation and HHFT of small scale mockups with advanced tungsten materials

Mock-ups with the advanced W-based materials were prepared by copper casting and vacuum brazing. HHFTs of the developed mock-ups were performed at electron beam facility EMS-60. The brazed mock-ups experienced cyclic tests of 10-25 MW/m².

1 mockups with the swaged W (PW, W-K, W-Y2O3), rolled W-ZrC and CVD-W

CNNC

Swaged-Pure W, W-Y₂O₃, W-K rods

DM-W

W-1203

W-Zrc

W-K

CVD-W/W

Rolled-W-ZrC Plate

CVD-W/W tiles

4. W/Cu mock-ups and components

High heat flux performance

Southwestern Institute of Physics

ENNE

"心两南物理研究院

Cooling water: 25±5 °C; 1.5m³/h; thermal screening: 10-25MW/m²@ 10s on/ 15s off Cycle thermal load: 15 MW/m²@ 300 cycles, 20 MW/m²@ 300 cycles

The swaged W-K materials: 25 MW/m² @ 100 cycles Mockup-1

Mockup-2

EMS-60

南加理研究院 4. W/Cu mock-ups and components

2 mockups with the rolled W-Y₂O₃ and W-La₂O₃ (T: 10mm)

ENNE

High heat flux performance

- Rolled W-Y₂O₃: 24*26*8 mm, armor thickness: 5mm
- Cooling water: $25 \pm 5 \text{ °C}$; $1.5 \text{ m}^3/\text{h}$;
- Thermal fatigue: $10-25MW/m^2$, 15s on/ 15s off $20MW/m^2$ @500-1000cycles; $25MW/m^2$ @300cycles

Surface modification of the HHF tested mockup

4. W/Cu mock-ups and components 心西南物理研究院 Southwestern Institute of Physics

3 mockups with the rolled W-K plate (T: 13.8mm)

ENNE

High heat flux performance

Rolled W-K: 24*26*12 mm, armor thickness: 5mm Cooling water: $25 \pm 5 \, {}^{\circ}\text{C}$; $1.5 \, {}^{3}/h$; Thermal fatigue: 10-25MW/m², 15s on/ 15s off 20MW/m² @500-1500cycles; 25MW/m² @500cycles

Surface modification

核工业西南物理研究院 4. W/Cu mock-ups and components

Manufacturing of components with the advanced W materials

ENNE

5. Summary

- Divertor high heat flux materials (W base PFMs and Cu base heat sink) have been prepared by industrial technology route and hot plastic-deformation technology, which is the standard process for bulk production and has large-scale production potential.
- The developed large scale W base PFMs exhibite high thermal conducitvity, high recrystallization temperature, and high strength/ductility. Especially, the swaged W-Y₂O₃ and W-K has excellent room-temperature ductility.
- ODS-Cu heat sink with high-temperature microstructure stability and mechanical properties has also been prepared by induction melting and plastic deformation.
- Divertor mockups with advanced W alloys have been prepared by vacumm casting and vacuum brazing methods. The advanced W alloys has been tested at 10 25 MW/m². The results show that the swaged and rolled W-K materials have no obvious damage after tested at 25 MW/m² for 300-500 cycles.
- Based on the developed W PFMs and joining technologies, large components have also been successfully prepared.

Thanks!