

SP B.1: PWI studies in GyM

A. Uccello, A. Cremona, F. Ghezzi, M. Pedroni, E. Vassallo, G. Alberti, L. Bana, D. Dellasega, M. Passoni Beneficiary: ENEA Linked Third Parties: ISTP-CNR Milano and Politecnico di Milano

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Acknowledgements

• GyM Team [A. Uccello, et al., Front. Phys. **11** (2023) 1108175]

• F. Mombelli, C. Tuccari, D. Vavassori

• M. Rasinski, J. Romazanov

• Eduard Grigore

JÜLICH

Forschungszentrum

PWI studies in GyM

PWIE.SPB.1.D002

- Role of **topography** in sputtering process of W by GyM He plasma
- Role of **morphology** in sputtering process of W by GyM He plasma

Linked PWIE-SPs

PWIE-SP B.4 Reference coatings for ITER and DEMO

PWIE-SP D.3.D002 ERO2.0 simulations of dynamic morphology studies in GyM. ERO2.0 simulations of the transport of sputtered material in GyM including the sample holder. (...)

Modelling

Sample production

Role of topography in sputtering process of W by GyM He plasma

Samples from **SP B.4** *compact* **500** *nm-thick* W coatings deposited by **HiPIMS** on graphite and silicon substrates w/ different texturing and R_a + polished bulk W, as reference

Experiment and characterisations

	W = W	
E _{He} + [eV]	Gr _{polish} Gr ₂₀₀ W W Gr ₄₀₀	Si _{flat} Si ₆₀₀ W W Si ₄₀₀ Si ₉₀₀
30	×	\checkmark
80	×	\checkmark
150	\checkmark	\checkmark
200	\checkmark	\checkmark
250	\checkmark	\checkmark
350	\checkmark	\checkmark

6e20 He⁺ m⁻² · 2 hours \rightarrow 4e24 He⁺ m⁻² T_{SH} < 450 °C

[A. Uccello, et al., Front. Phys. 11 (2023) 1108175]

Experiment and characterisations

Before and after exposures

Net erosion

Mass loss

• FIB marking, $W_{bulk} \rightarrow$

Data for benchmarking with ERO2.0 modelling - SP D.3

Topography \rightarrow AFM Morphology+composition → SEM+EDXS

Topography and morphology changes

Samples topography did not significantly change after exposures

 $E_{He^+} \ge 250 \ eV \longrightarrow W_{bulk} \rightarrow \text{nanostructures of [1]}$

 \rightarrow W/Si & W/Gr: undulations w/ narrow interval W films \rightarrow preferential growth direction \rightarrow [110]

Topography and morphology modifications at nm-scale

R. Sakamoto, et al., Nucl. Fusion 57 (2017) 016040

 \rightarrow determination of quasi-static sputtering yield Y

 \rightarrow single time step ERO2.0 simulations

A. Uccello | WP PWIE Reporting Meeting | VTT, April 9-11, 2024 | 5/15

Topography and morphology changes

Samples topography did not significantly change after exposures

 $E_{He^+} \ge 250 \ eV \longrightarrow W_{bulk} \rightarrow \text{nanostructures of [1]}$ \rightarrow W/Si & W/Gr: undulations w/ narrow interval

Topography and morphology modifications at nm-scale

[1] R. Sakamoto, et al., Nucl. Fusion 57 (2017) 016040

 \rightarrow single time step ERO2.0 simulations

A. Uccello | WP PWIE Reporting Meeting | VTT, April 9-11, 2024 | 5/15

$W_{bulk} Y_{eff}$ from mass loss data (Δm)

Energy and angular distributions of sputtered particles in ERO2.0 from SDTrimSP (amorphous W)

- $\bullet \: \mathsf{R}_{\mathsf{a}} \: \mathsf{IOW} \to Y_{\mathsf{eff},\mathsf{ERO}} \simeq Y_{\mathsf{SDTrimSP}}$
- Yeff,Δm < Ysdtrimsp (& Yeff,ERO) as observed in other LPDs
- He atoms on surface, from incoming flux (dynamic retention), shield W lattice atoms reducing their sputtering probability [2]

$W_{\text{bulk}} Y_{\text{eff}}$ from mass loss data (Δm)

Energy and angular distributions of sputtered particles in ERO2.0 from SDTrimSP (amorphous W)

- $\bullet \: R_a \: \text{IOW} \to Y_{\text{eff},\text{ERO}} \simeq Y_{\text{SDTrimSP}}$
- <mark>Υeff,Δm < Ysdtrimsp</mark> (& Yeff,ERO) as observed in other LPDs
- He atoms on surface, from incoming flux (dynamic retention), shield W lattice atoms reducing their sputtering probability [2]

SDTrimSP for 50%W-50%He surface

• $E_{He^+} \ge 250 \ eV$, **2**·**Y**eff, $\Delta m \simeq$ **Y**SDTrimSP (& **Y**eff,ERO)

W_{bulk} global Y_{eff} from Δm and local Y_{eff} from thickness loss (Δs)

Unveil role of topography in sputtering of W by GyM He plasma

Need another **parameter** to represent surface topography

Unveil role of topography in sputtering of W by GyM He plasma

- Despite very different topography, $Y_{eff,norm}$ (δ_m) well fitted by sigmoid function
- **ERO2.0** \rightarrow Y_{eff,norm}(δ_m) decreases due to increase of fraction of sputtered W atoms deposited at neighbouring surface

[4] C. Cupak, et al., Appl. Surf. Sci. 570 (2021) 151204

A. Uccello | WP PWIE Reporting Meeting | VTT, April 9-11, 2024 | 8/15

PWI studies in GyM

PWIE.SPB.1.D002

- Role of **topography** in sputtering process of W by GyM He plasma
- Role of morphology in sputtering process of W by GyM He plasma

Linked PWIE-SPs

PWIE-SP B.4 Reference coatings for ITER and DEMO

PWIE-SP D.3.D002 ERO2.0 simulations of dynamic morphology studies in GyM. ERO2.0 simulations of the transport of sputtered material in GyM including the sample holder. (...)

Modelling

Role of morphology in sputtering process of W by GyM He plasma

Samples from **SP B.4** *compact* nanocrystalline W and W+O coatings on **polished** Mo

Experiment and characterisations

 $P_{source} = 1.2 \text{ kW}, p_{work} = 10^{-3} \text{ mbar}, B_{axis} = 80 \text{ mT}$

Γ [He ⁺ m ⁻² s ⁻¹]	6.0e20	2.8e20
Φ [He⁺m⁻²]	4.3e24	3.6e24
$E_{He^+} = 200 \text{ eV}$	\checkmark	
<i>E_{He}</i> ⁺ = 250eV	\checkmark	\checkmark
$E_{He^+} = 300 \text{ eV}$	\checkmark	
$E_{He^+} = 350 \text{ eV}$	\checkmark	

Before and after exposures Net erosion \rightarrow Mass loss Topography \rightarrow AFM Morphology+composition \rightarrow SEM+EDXS

[A. Uccello, et al., Front. Phys. 11 (2023) 1108175]

Topography and morphology changes: $E_{He^+} = 250 \ eV$

R. Sakamoto, et al., Nucl. Fusion **57** (2017) 016040
M. Sala, et al., Nucl. Mater. Energy **24** (2020) 100779

- W+O_{PLD}: grain formation \leftarrow T_{SH} ~400-500 °C enough for recrystallization [5]
- W_{HiPIMS} , $W+O_{PLD}$, $W+O_{HiPIMS}$: narrow undulations \rightarrow {110} surface plane [1]
- W_{HiPIMS} & W+O_{HiPIMS}: jagged structure \rightarrow high-index surface plane
- W_{CMSII} top of the grains gentle smoothing

A. Uccello | WP PWIE Reporting Meeting | VTT, April 9-11, 2024 | 11/15

Topography and morphology changes: $E_{He^+} = 250 \ eV$

Samples topography did not change

R. Sakamoto, et al., Nucl. Fusion **57** (2017) 016040
M. Sala, et al., Nucl. Mater. Energy **24** (2020) 100779

- W+O_{PLD}: grain formation \leftarrow T_{SH} ~400-500 °C enough for recrystallization [5]
- W_{HiPIMS} , $W+O_{PLD}$, $W+O_{HiPIMS}$: narrow undulations \rightarrow {110} surface plane [1]
- $W_{HiPIMS} \& W+O_{HiPIMS}$: jagged structure \rightarrow high-index surface plane
- W_{CMSII} top of the grains gentle smoothing

A. Uccello | WP PWIE Reporting Meeting | VTT, April 9-11, 2024 | 11/15

Topography and morphology changes: $E_{He^+} = 250 \ eV$

R. Sakamoto, et al., Nucl. Fusion **57** (2017) 016040
M. Sala, et al., Nucl. Mater. Energy **24** (2020) 100779

- W+O_{PLD}: grain formation \leftarrow T_{SH} ~400-500 °C enough for recrystallization [5]
- W_{HiPIMS} , $W+O_{PLD}$, $W+O_{HiPIMS}$: narrow undulations \rightarrow {110} surface plane [1]
- W_{HiPIMS} & W+O_{HiPIMS}: jagged structure \rightarrow high-index surface plane
- W_{CMSII} top of the grains gentle smoothing

A. Uccello | WP PWIE Reporting Meeting | VTT, April 9-11, 2024 | 13/15

Topography and morphology changes: $E_{He^+} = 250 \ eV$ vs $350 \ eV$

R. Sakamoto, et al., Nucl. Fusion **57** (2017) 016040
M. Sala, et al., Nucl. Mater. Energy **24** (2020) 100779

- W+O_{PLD}: grain formation \leftarrow T_{SH} ~400-500 °C enough for recrystallization [5]
- W_{HiPIMS} , $W+O_{PLD}$, $W+O_{HiPIMS}$: narrow undulations \rightarrow {110} surface plane [1]
- W_{HiPIMS} & W+O_{HiPIMS}: jagged structure \rightarrow high-index surface plane
- W+O_{HiPIMS}: holes \rightarrow aggregation of He bubbles

A. Uccello | WP PWIE Reporting Meeting | VTT, April 9-11, 2024 | 12/15

Topography and morphology changes: $E_{He^+} = 250 \ eV$ vs $350 \ eV$

Topography and morphology modifications at nm-scale

→ determination of quasi-static sputtering yield Y → single time step ERO2.0 simulations

$W_{\text{bulk}} Y_{\text{eff}}$ from mass loss data (Δm)

$Y_{eff,\Delta m} < Y_{eff,ERO} W_{bulk} \rightarrow He$ dynamic retention

[2] R.P. Doerner, Scripta Materialia 143 (2018) 137-41

$W_{bulk} Y_{eff}$ from mass loss data (Δm)

[2] R.P. Doerner, Scripta Materialia 143 (2018) 137-41

Conclusions

Compact **W coatings** deposited on **Gr** substrates with **irregular** surface and **Si** substrates with pyramids + polished Wbulk

Compact W and W+O coatings with different structure at micro- and nanometer scale deposited on **polished** Mo substrates

He plasma exposure in GyM @ 4e24 He⁺ m⁻² and $E_{He^+} \leq 350 \ eV$

 $Y_{eff,\Delta m} < Y_{SDTrimSP}$ (& $Y_{eff,ERO}$) \rightarrow He dynamic retention

$$Y_{eff,norm}\Big|_{\Delta m} (\delta_m) \cong Y_{eff,norm}\Big|_{ERO} (\delta_m)$$

 $Y_{eff,norm}(\delta_m)$ allows to study role of

topography in sputtering process of W

$$(n) \cong Y_{eff,norm}\Big|_{ERO} (\delta_m)$$

Y_{eff,}W/Mo

Role of crystal orientation in sputtering process of W?

A. Uccello | WP PWIE Reporting Meeting | VTT, April 9-11, 2024 | 14/15

EBSD

XRD

FRC

Thank you!

A. Uccello | WP PWIE Reporting Meeting | VTT, April 9-11, 2024 | 15/15

Experiment and characterisations

[A. Uccello, et al., Front. Phys. 11 (2023) 1108175]

A. Uccello | WP PWIE Reporting Meeting | VTT, April 9-11, 2024

Global Y_{eff} from Δm and local Y_{eff} from thickness loss (Δs)

W_{bulk}: $Y_{eff,\Delta m} \neq Y_{eff,\Delta s} \rightarrow$ sputtering crystal orientation dependence [3]

Global Y_{eff} from Δm and local Y_{eff} from thickness loss (Δs)

1 µm

Yeff normalized at $Y_{eff,\Delta m,W/Gr_{polish}}$ for W/Gr and at $Y_{eff,\Delta m,W/Si_{flat}}$ for W/Si

[3] K. Schlueter, et al., Phys. Rev. Lett. 125 (2020) 225502 [4] J. Bohdansky, et al., J. Nucl. Mater. 162-4 (1989) 861-4

A. Uccello | WP PWIE Reporting Meeting | VTT, April 9-11, 2024

439.9 nn

Y_{eff} from Δm vs Γ

Small decrease of $Y_{eff,\Delta m}$ by increasing Γ due to larger He dynamic retention

Cross-machine experiment (in progress)

- **GyM** (Γ = 10¹⁹ 10²¹ m⁻² s⁻¹)
- **PSI-2** (Γ = 10²⁰ 10²³ m⁻² s⁻¹)
- MAGNUM-PSI (Γ = 10²³ 10²⁵ m⁻² s⁻¹)

Goal: study effect of Γ on W erosion

- 1st campaign, exposure conditions
- Argon plasma
- Ar⁺ energy = 50 eV
- • = 1.0e25 Ar⁺m⁻² (GyM: ~2 working-days)

Experiments in GyM once nanocolumnar W samples are available (scheduled for mid-Feb)

Cross machine experiment

GyM upgrade: BiGyM \rightarrow Why?

- To boost performance to study divertor-relevant PMI
 - Plasma-side: $n_e \le 10^{19} \text{ m}^{-3}$ and $\Gamma \le 10^{23} \text{ m}^{-2} \text{s}^{-1}$
 - Material-side: Tsample≤1500 K
 - Diagnostics-side: hydrogen isotope retention
- To support and complement RFX-mod2 PWI program
- To contribute to educational and training of young researches in view of DTT
- To start **brand new activities** in other technological sectors, like aerospace, solar collectors and catalysis

Ø)

Nov. 2022 – Apr. 2025 Total grant: 1.354.800,00 €

Consiglio Nazionale delle Ricerche

2 helicon plasma sources

@13.56 MHz (radiofrequency)

n www.internationalistication

GyM upgrade: $BiGyM \rightarrow How$?

- Hiring of **new personnel**: 2 temporary researches and 1 PhD student
- Procuring and installing **new hardware**

Consiglio Nazionale delle Ricerche

FEDERICO II

GyM upgrade: BiGyM \rightarrow How?

- Hiring of **new personnel**: 2 temporary researches and 1 PhD student
- Procuring and installing **new hardware**

Consiglio Nazionale delle Ricerche

UNIVERSITÀ DEGLI STUDI DI PADOVA

FEDERICO II

GyM upgrade: BiGyM \rightarrow How?

- Hiring of new personnel: 2 temporary researches and 1 PhD student
- Procuring and installing **new hardware**

Spectrometer High-resolution monochromator $\lambda = 200 - 1000 \text{ nm}, \Delta \lambda = 0.06 \text{ nm}$ Specctrometer ICCE Intensified CCD Laser Picosecond pulse duration Max energy per pulse > 50 mJ

