

A SEM, EDS and ³He-NRA synergy in the micro analysis of AUG dust particles

Georgios Provatas

S. Fazinić, I. Bogdanović Radović, I. Božičević Mihalić, T. Dunatov, K. Ivanković Nizić

M. Balden, V. Rohde

The RBI accelerator facility infrastructure

uNRA, uPIXE

IBA analysis of dust particles:

- Focused ion beam: 2.7 4 MeV $^3\text{He}\approx 6\ \mu\text{m}$
- Ion beam currents about 70 pA
- •scanned areas: 350x350 μm
- NRA: light elements (D, B, Be, C, N)
- PIXE: Na and heavier elements
- EBS: C, O, N, etc.
- •analysis to the <u>depth</u> of about 15μ m in Be rich samples

• * Dust particles from the JET-ILW studied at RBI

Previously on RBI

J.C. Flanagan et al., Plasma Phys. Control. Fusion 57 (2015) 014037

Ion Microbeam Analyses of Dust Particles and Codeposits from JET with the ITER-Like Wall

Stjepko Fazinić,^{*,†©} Tonči Tadić,[†] Marin Vukšić,[†] Marek Rubel,[‡] Per Petersson,[‡] Elżbieta Fortuna-Zaleśna,[§] and Anna Widdowson^{||}

Micro-analyses of dust particles generated in the JET tokamak with the ITER-like wall

Stjepko Fazinić¹, Iva Božičević-Mihalić¹, Georgios Provatas¹, Tonči Tadić¹, Marek Rubel², Elżbieta Fortuna-Zaleśna³, Anna Widdowson⁴⊝ and JET contributors^{*}

Article

Dust Monitors in JET with ITER-like Wall for Diagnosis of Mobilized Particles and Co-Deposited Layers

Stjepko Fazinić ^{1,*}, Georgios Provatas ^{1,*}, Iva Božičević Mihalić ¹, Tonči Tadić ¹, Marek Rubel ², Justyna Grzonka ³, Per Petersson ², Anna Widdowson ⁴, Sunwoo Moon ² and Elzbieta Fortuna-Zaleśna ⁵

2018

2020

2022

Micro-analyses of JET-ILW particles @ RBI

Samples collected from vacuum cleaner after the ILW-3 in 2015-2016

Dust particles collected ILW-2 and ILW-3 on Si plates-monitors, wall probes for erosion and deposition studies.

Dust sampled using stick carbon pad from the inner divertor tile after ILW-2 (2013-2014)

Micro-analyses of JET-ILW particles @ RBI

Initially, particles interesting for further analysis are characterized and selected by means of SEM/EDS microscopy. Warsaw University of Technology

> EDS not sensitive to D Not accurate in light elements quantification

Selected particles were further studies by NRA, PIXE microscopy

Findings from micro-analyses of JET-ILW particles @ RBI

Two types of dust particles were found

- Larger Be-rich >90 at% with D up to 3.4 at% also Ni (1-3 at%), Cr (0.4-0.8 at%), W (0.2-0.9 at%), Fe (0.3-0.6 at%), and Cu and Ti.
- small particles rich in Al and/or Si that were in some cases accompanied by other elements, such as Fe, Cu, or Ti or W and Mo.

- 1) Areas of $\sim 120 \times 120 \mu m$ rich in Be, W and steel or Inconel components and NRA spectrum with Be and D presence.
- 2) Carbon particles with high Dcontent

Clear evidence that fuel retention is predominantly associated with Carbon.

WP PWIE Midterm Meeting 2024, Helsinki

generated in JET-ILW

In AUG first wall is Be-free, however, Boron could be present due to boronization, that creates a thin B film on the walls to reduce the levels of impurity contamination in plasma

NRA analysis for D quantification can be challenging due to signal overlap.

NRA analysis for D content carried out using SIMNRA, taking into account the angular spread of the detector.

The two pads were inserted in the microprobe and with the use of a microscope ROIs were identified

PAD A19-2019

Most of the collected particles in the first pad are located near the top edge

Acc.V Spot Magn

Det WD

PAD A19-2019

Middle particle of 3 particles in map 15x20 um and 4 um thick particle Deuterium: 12 (2) x10¹⁵ at/cm² B, W, Al, Cr, Fe

WP PWIE Midterm Meeting 2024, Helsinki

no21

PAD A19-2019

Strange? area of two Boron particles 50x60 um and 20x20 um No Deuterium One particle enriched in ¹¹B the other ^{nat}B, Includes W, Al.

PAD HS12-2009

Absence of Boron. Areas of analysis near the middle of the pad

Big particle, 100x50 um and 10 um thick Deuterium: 5 (1) 10¹⁵ at/cm² Cr, W, Fe present

PAD HS12-2009

PAD HS12-2009

A big, 200x200 um area with few big structures. In average 10 um thick Deuterium: 13 (2) 10¹⁵ at/cm² W, Al, Cr, Fe.

On the road to accurate NRA analyses

Need for reliable ¹¹B(³He,p₀)¹³C and ¹⁰B(³He,p₁)¹²C reactions cross sections

Within the IAEA CRP F11023, contract no. 24308 We collaborate with RUBION Bochum accelerator laboratory in the study of:

- ${}^{9}\text{Be}({}^{3}\text{He},p_i){}^{11}\text{B}$ up to 6 MeV
- $^{12}C(^{3}He,p_i)^{14}N$ up to 6 MeV
- ${}^{11}B({}^{3}He,p_i){}^{13}C$ up to 6 MeV
- $^{10}B(^{3}\text{He},p_{i})^{12}\text{C}$ up to 6 MeV

Thank you!