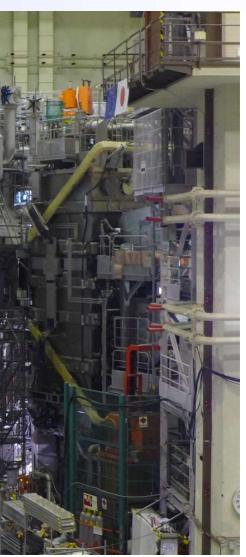
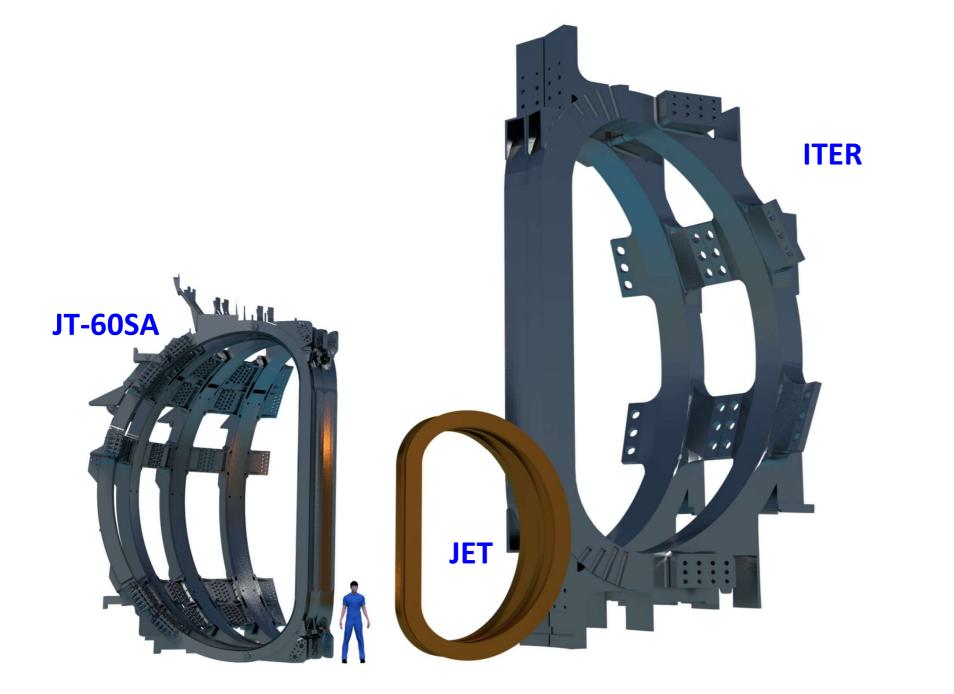
Physics challenges of a W JT-60SA

J. Garcia On behalf the JT-60SA Experiment Leaders



Outline

- The JT-60SA tokamak
- Objectives, programme: role of W
- Conclusions



JT-60SA: big step beyond JET towards ITER

- JET and ITER

J. Garcia| EUROfusion Science Coordination Meeting| 26/03/2024| 3

• JT-60SA is the largest tokamak before ITER • JT-60SA represents an intermediate step between

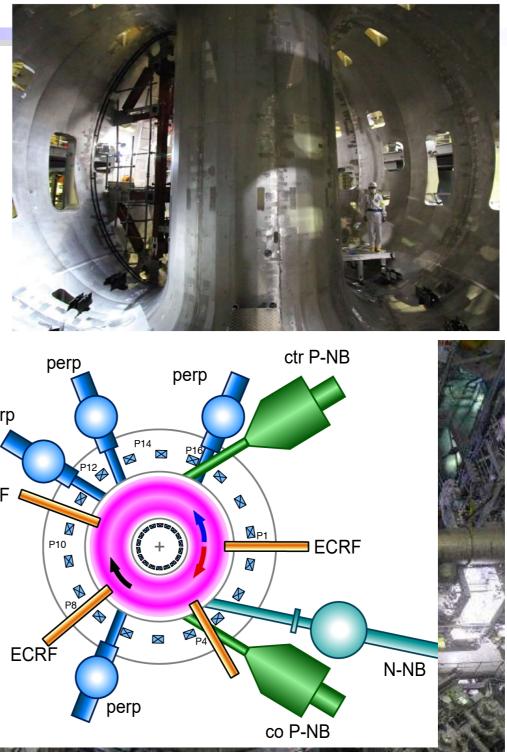
JT-60SA: big step beyond JET towards DEMO

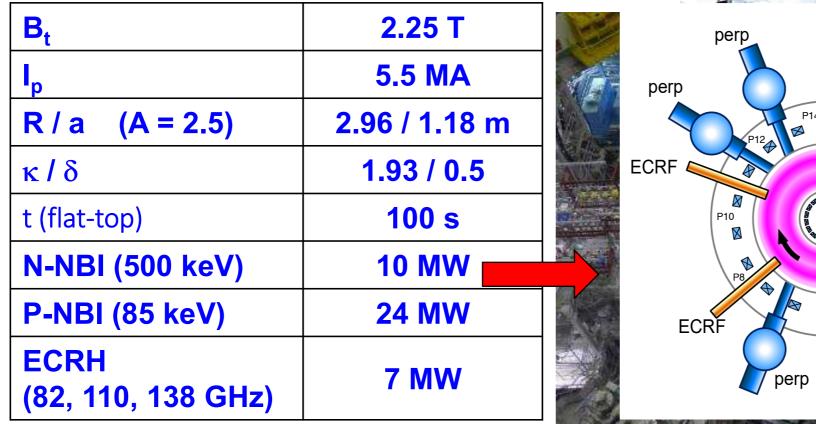
- JET and ITER

J. Garcia EUROfusion Science Coordination Meeting 26/03/2024 4

• JT-60SA is the largest tokamak before ITER

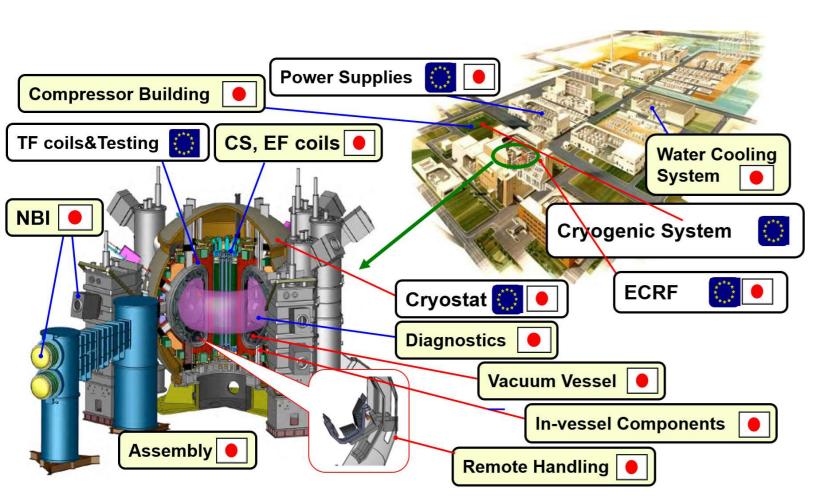
• JT-60SA represents an intermediate step between


• Unlike JET, JT-60SA can address long pulse

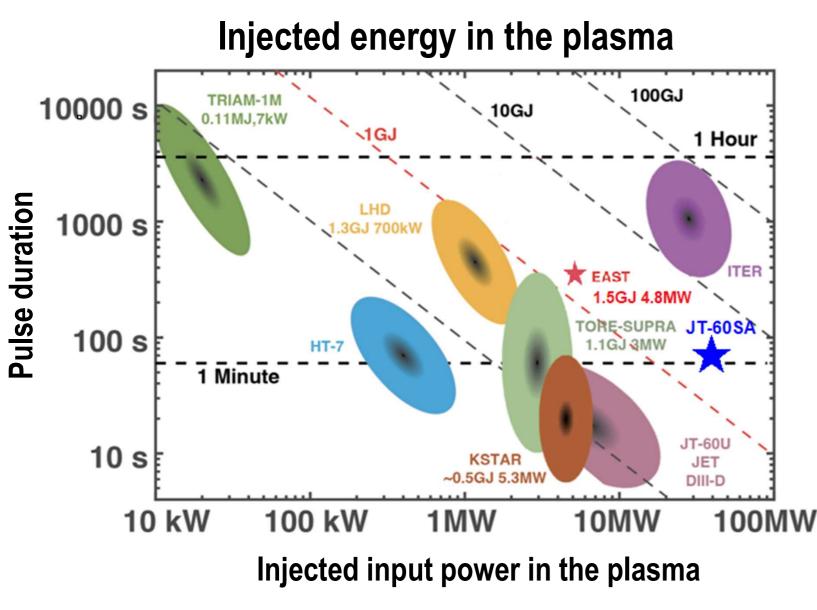

sustained operation

Continuous operation is necessary for DEMO

The JT-60SA tokamak


- Designed and built **jointly** by **Japan** and **EU** at the Naka site under the Broader Approach agreement
- Fully superconducting, high current, highly shaped
- High input power flexibility
- Jointly exploited by Japan and EU

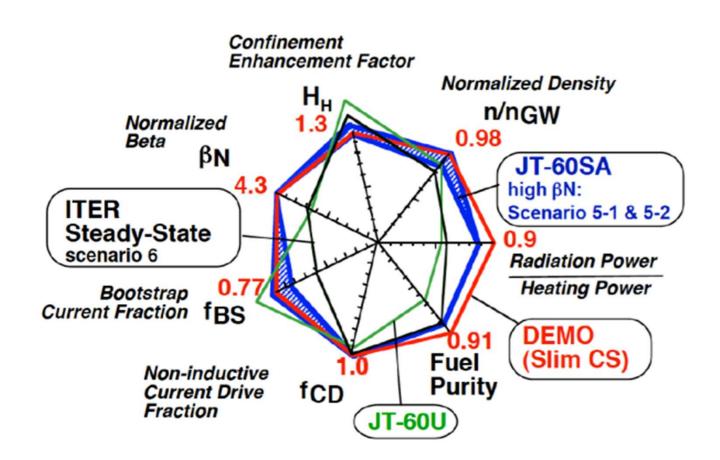
JT-60SA: A technological challenge


- JT-60SA operation requires cuttingedge technology:

 - Cryogenic systems
 - 500 keV N-NBI
 - Remote Handling

• Precise large machine assembly

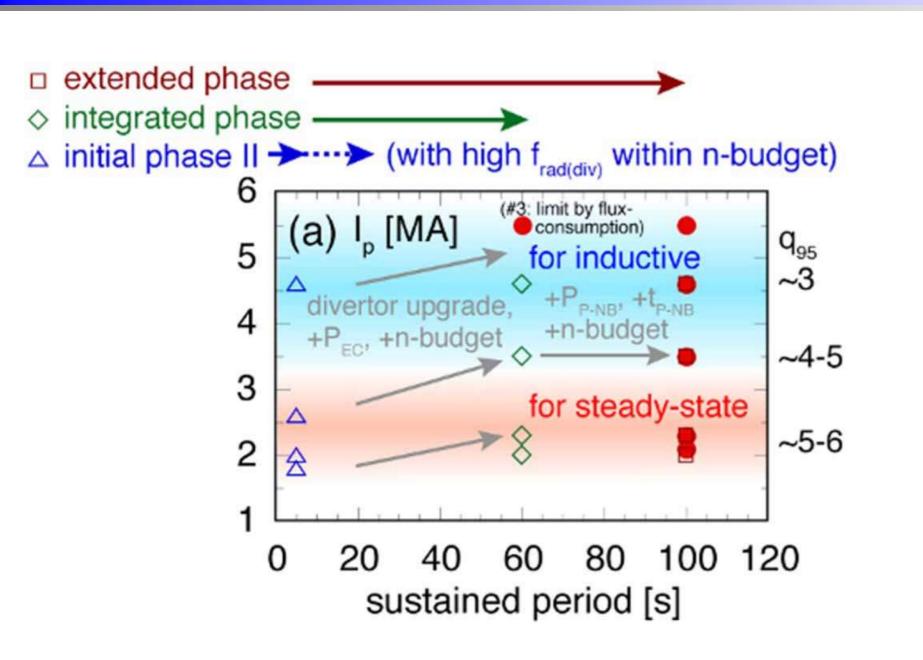
JT-60SA: A technological challenge


- JT-60SA operation requires cuttingedge technology:

 - Cryogenic systems
 - 500 keV N-NBI
 - **Remote Handling**
- Unexplored technological space: Closing the gap with ITER

• Precise large machine assembly

JT-60SA: A scientific challenge


- JT-60SA aims at DEMO and ITER normalized plasma parameters
 - confinement

J. Garcia | EUROfusion Science Coordination Meeting | 26/03/2024 | 8

- High: beta, non-inductive current fraction, normalized density,

JT-60SA: A scientific challenge

- JT-60SA aims at DEMO and ITER normalized plasma parameters
 - confinement
- While working at high absolute plasma parameters:
 - Ip, Wdia, Wth, Neutron rate, pulse duration

J. Garcia| EUROfusion Science Coordination Meeting| 26/03/2024| 9

- High: beta, non-inductive current fraction, normalized density,

• Caviat: No Tritium operations

Outline

- The JT-60SA tokamak
- Objectives, programme: role of W
- Conclusions

The JT-60SA project objectives

• Contribute to early realization of fusion energy by:

supporting the comissioning, start-up and exploitation of ITER


Complementing ITER in resolving key issues for DEMO

train the next generation of fusion physicists and engineers

The most important goal of JT-60SA is:
 to decide the practically acceptable DEMO

plasma design

including practical and reliable plasma control schemes

High level JT-60SA project summary

Research phase	Focus of exploitation	Operation Campaign	Expected operation schedule		RH	Divertor	Installed NB power	ECRF	Max. usable aux. power
- Initial research phase I	 Integrated pre-plasma Commissioning Initial stable and reliable operation H operation for commissioning towards D operation. 	Op-1	2020-2021 (6M) 2023 (6M) First plasma 2023	н		Open upper inertially cooled carbon	0	1.5 MW (2 Gryo.)	1.5MW
	Stable operation at high current	Op-2	2025-2026 (9M)			Inertially cooled lower pumped carbon	16MW (with H) 23.5 MW (with D) PNB 8 units, plus NNB)	3.0 MW (4 gyro)	19MW ~26MW
Initial research phase II	heated plasma ITER and DEMO regime access (high power and high Ip with short pulses)	Op-3	2026-2027 (9M)		R&D				(limited by divertor cooling)
	 <u>Acces to the ITER standard</u> scenario High beta access ITER risk mitigation (ELM, disruption) 	Op-4	2027-2028 (8M)	D			30 MW (PNB 12 units, plus NNB) 34MW		33 MW
Integrated research phase I	 High beta long pulse Burning plasma relevant ITER standard and hybrid stationary (~2-3tR) High beta steady-state (~2- 3tR), DEMO contribution 	TBD	TBD			Actively cooled lower pumped carbon		7MW (9 gyro.)	37MW
Integrated research phase II		TBD	From ~2030 (TBC)			Actively cooled lower pumped tungsten			
Extended research phase	 High beta and metal wall compatibility Radiative divertor with impurity seeding Impurity pumpout from core 	TBD	>5y		Use	Actively cooled tungsten advanced structure (Upper div. TBC)			41MW

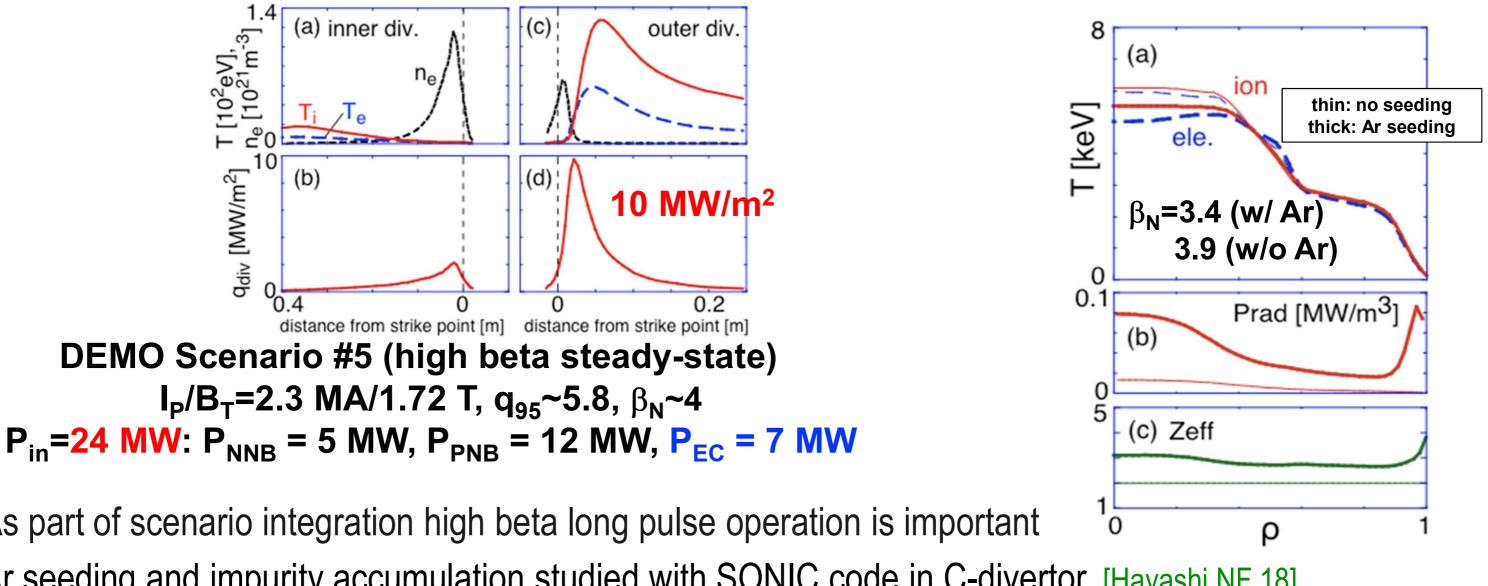
Considerations

- JT-60SA project has had significant delays
- ITER project also is expected to have significant delays
- ITER project has gone into a phase of rebaseline and change of approach to its research plan
- Private companies are pushing the field towards earlier scientific results
- Global anxiety as big projects look too slow to be completed

13

New proposal for early W transition

	Research phase	Focus of exploitation	Operation Campaign	Expected operation schedule		Annual neutron limit	RH	Divertor	Installed NB power	ECRF	Max. usable aux. power
Initia		Integrated Commissioning	Op-1	2020-2021 (6M) 2023 (6M) First plasma 2023	н	- 3.2e19	-	Open upper inertially cooled carbon	0	1.5 MW (2 Gyro.)	1.5MW
	Initial research phase I	Initial stable and reliable operation	Op-2					Lower pumped carbon with intershot cooling (limits high power heating duration) Actively cooled lower pumped tungsten	PNB 8 units, plus NNB Total 16MW (with H) 23.5 MW (with D)	3 MW (4 gyro)	19MW
		 H operation for commissioning towards D operation. Stable operation at high current heated plasma 		2026~			R&D				26.5MW
		ITER and DEMO regime access (high power and high Ip with	Op-3	TBD	D		NQU				
	Initial research phase II	 short pulses) Access to ITER-relevant high confinement H-mod 	Op-4	TBD					PNB 12 units, plus NNB		33 MW
		 at high Ip High beta access ITER risk mitigation (ELM, disruption) 	No. of campaigns to be confirmed	TBD							
	Integrated research phase I	High beta and metal wall compatibility	TBD	TBD		4.0e20			Total 30 MW	7MW (9 gyro.)	37MW
	Integrated research phase II	High beta long pulse Burning plasma relevant	TBD	TBD		1.0e21					
	Extended research phase	 ITER standard and hybrid stationary (~2-3τ_R) High beta steady-state (~2-3τ_R), DEMO contribution 	TBD	TBD		1.5e21	Use		34MW		41MW

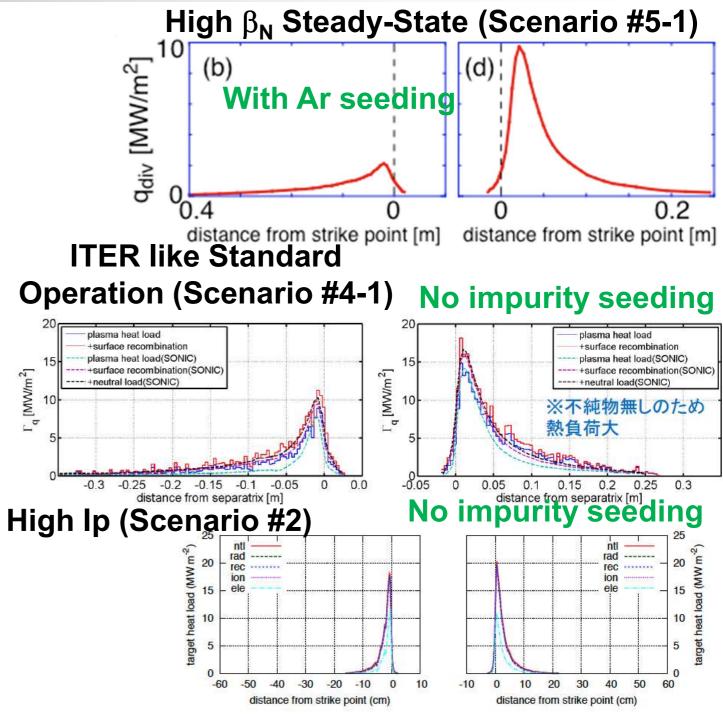

J. Garcia| EUROfusion Science Coordination Meeting| 26/03/2024| 14

14

Steady-state high beta scenario for JA-DEMO

Compatibility between high β and metal wall for long time will be the role of JT-60SA

- As part of scenario integration high beta long pulse operation is important
- Ar seeding and impurity accumulation studied with SONIC code in C-divertor. [Hayashi NF 18]
- Impact of W in other scenarios studied with COREDIV [Gałązka PPCF 17]



Specs of Heat Load Resistance are Key

General request of divertor

- High β_N steady-state: ~10 MW/m² for long time
- ITER like standard op.: ~15 MW/m² for long time
- Risk mitigation/physics: ~20 MW/m² for a few secs?
- W-divertor should demonstrate this capability
- Integrated core-edge assessment is necessary

J. Garcia EUROfusion Science Coordination Meeting 26/03/2024 16

Machine Upgrades

- Prepartion for working in a W environment may require extensive JT-60SA upgrades/studies/actions:
 - Based on JET results 3-7MW of central ECRH might be needed (total ECRH planned now is 7MW)
 - Dedicated diagnostics upgrades (e.g. W flux monitor, W density measurement, Visible camera, etc)
 - Test of W transport in JT-60SA conditions can be performed during C ICD by using TESTPEL
 - Self-consistent modelling exploring the possibility of W screening at the pedestal, as it happens in JET, will be performed.
 - Specific experiments can be performed during the C ICD to assess some of the previous points. Additionally, experiment in other devices with a W-divertor and wall could assess some of the specificities of the JT-60SA scientific programme

Outline

- The JT-60SA tokamak
- Objectives, programme: role of W
- Conclusions

Conclusions

- High beta, high confinement long pulse operation is the main JT-60SA goal
- General consensus in JT-60SA project that early transition to W environment would be beneficial, but:
 - Significant amount of scientific topics can be studied initially in the inertial cooled C divertor
 - W-divertor should be compatible with the main JT-60SA scientific goals
 - Installation of W-wall has not been properly analysed
 - JT-60SA would require some important upgrades to avoid potential W pollution in the plasma core
 - Experiment Team will encourage W related scientific activities

