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• Problem: Measurements of turbulent transport

• Theoretical background of the transport estimation model

• Two applications; Simulations (GEMR) & Experimental data (MPM)

• Summary
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• Turbulence
 Important for plasma confinement capabilities of fusion devices

 Affects all areas; from the core1 to the edge2 and plasma-facing materials3-5

• Measurements
 Probes are measuring density and electrostatic potential fluctuations which are used to

calculate turbulent transport6,7

 Invasive diagnostic: subject to heat loads limited operational space

 Potential measurements are the limiting factor to calculate the turbulent transport, while
density measurements are widely available

• Goal
 Find a model to estimate turbulent transport

 Utilize single-point density measurements

 Circumvent the need for potential measurements
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Problem: Measurements of turbulent 
transport
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Theoretical background

Time evolution of density variance

𝜕〈 ෤𝑛2〉

𝜕𝑡
+ 𝛻F ෤𝑛 = P෤𝑛 − 𝜖 ෤𝑛

• Flux of variance: 𝐹෥𝑛 = ෥𝒖 ෤𝑛2 − 𝜅𝛻〈 ෤𝑛2〉

• Dissipation: 𝜖෥𝑛 = 2𝜅〈𝛻 ෤𝑛 ⋅ 𝛻 ෤𝑛〉

• Production: 𝑃෥𝑛 = −2 ෥𝒖 ෤𝑛 ⋅ 𝛻〈𝑛〉

Thought experiment: 
• Reset fluid into state of negligibly small level of density fluctuations but fully developed velocity field

• Flux of variance and dissipation are expected to be small

• Variance growth is ought to grow linearly at a rate given by 𝑃෥𝑛

1

2 𝛻〈𝑛〉 2

𝜕〈 ෤𝑛2〉

𝜕𝑡
= −

〈෥𝒖෤𝑛〉

𝛻〈𝑛〉
= 𝐷𝑇
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𝑛 = 𝑛 + ෤𝑛
𝒖 = 𝒖 + ෥𝒖

[Turbulent Flows, Stephen B. Pope, 2000]



• Radial transport across magnetic flux surfaces can be quantified by the turbulent diffusivity

𝐷𝑇 = −
෥𝑢𝑟 ෤𝑛

𝛻𝑟〈𝑛〉

• Deduce time-averaged flux Γ𝑟 = 〈 ෤𝑢𝑟 ෤𝑛〉 from density fluctuation statistics at one point

• Variance growth is the key quantity

• Following the thought experiment; calculate the variance growth when fluctuations are small.

 Step 1: 𝑅𝑛(𝑡) =
෤𝑛(𝑡)

𝛻𝑟〈𝑛〉
time-dependent mixing length

 Step 2: 𝐷𝐶𝑉 = lim
𝜏→0

1

2𝜏
𝑅𝑛 𝑡 + 𝜏 − 𝑅𝑛 𝑡 2 𝑅𝑛 𝑡 = 0 = 𝐷𝑇
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Theoretical background

Squared increments

between timesteps

ConditioningTime 

derivative

?
GOAL
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• 3D electromagnetic delta-f gyrofluid code for tokamaks (here for AUG)

• 2D drift planes (outer midplane); ~2 cm around the LCFS

 Plasma edge, near-SOL & partly far-SOL (far-SOL discarded for transport analysis) 

• 4 different density runs

• Calculate 𝐷𝑇 using 𝑣𝐸𝑥𝐵; electrostatic transport

• Γ𝑟 =
෤𝑛 ෨𝐸𝑦

𝐵

• 𝐷𝑇 = −Γ𝑟/𝛻𝑟〈𝑛〉
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Application: Simulations (GEMR)
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Results: GEMR
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𝐷𝐶𝑉 = 𝐷𝑇
?

Particle transport
• Colors indicate density runs

 Blue lowest; red highest

• 80 radial positions per run for comparison

• Grey lines show factor 2 deviations
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Results: GEMR
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𝐷𝐶𝑉 = 𝐷𝑇
?

Particle transport Heat transport

𝑋𝑇 = −
2

3

෤𝑢𝑟 ෨𝑇𝑒
𝛻𝑟〈𝑇𝑒〉
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• Method‘s favorable area of application is the core

 Transport measurements are not available

• Difficult to validate methods without a precise counterpart

 GEMR showed decent applicability in the near-SOL

Use MPM for first exp. heuristic validation

9

Application: Experimental data (MPM) 
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• Method‘s favorable area of application is the core

 Transport measurements are not available

• Difficult to validate methods without a precise counterpart

 GEMR showed decent applicability in the near-SOL

Use MPM for first exp. heuristic validation

• MPM provides similar data as used for GEMR

 Ion saturation current: density measurement

 Floating potential: plasma potential 

• MPM data from ASDEX Upgrade (11 timeseries) and W7-X (51 timeseries)

 Different heating powers, magnetic configurations

1 0

Application: Experimental data (MPM) 
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• Γ𝑟 =
෤𝑛 ෨𝐸𝜃

𝐵
𝐷𝑇 = −Γ𝑟/𝛻𝑟〈𝑛〉

• Deviation lines

 Dashed: factor 2

 Dotted: factor 4

• Deviations not larger than 4 for

AUG & W7-X

• AUG

 Overestimation by factor 2 (?)

 Larger uncertainties due to profiles

• W7-X

 Reproduction of overall trends

 Mostly withing a factor of 2

Results: MPM
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𝐷𝐶𝑉 = 𝐷𝑇
?
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• Estimation of diffusivity calculating growth of density fluctuation variance

conditioned to small pertubations

• Two applications

 Simulations (GEMR)

 Experimental data (MPM from AUG and W7-X)

• Deviations not larger than 4 for most of the data

• Overall reproduction of trends

1 2

Summary
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BACKUP - Multiconditioning
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𝜕

𝜕𝑡
෤𝑛 + ෥𝐮𝛻 𝑛 + 𝛻 ෥𝐮 ෤𝑛 = 𝜅𝛻2 ෤𝑛

Multiply by ෤𝑛 and averaging yields

1

2

𝜕

𝜕𝑡
෤𝑛2 + ෥𝒖෤𝑛 𝛻 𝑛 + ෤𝑛෥𝒖𝛻 ෤𝑛 = 𝜅〈 ෤𝑛𝛻2 ෤𝑛〉
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BACKUP – Local vs. Non-local
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