

2D core ion temperature and impurity density measurements with CICERS at Wendelstein 7-X

R. Lopez-Cansino¹, V. Perseo², E. Viezzer¹, O.P. Ford², M. Kriete³, T. Romba², J. Rueda-Rueda¹, P.Zs. Poloskei², F. Reimold² and the W7-X team

> ¹Dept. Of Atomic, Molecular and Nuclear physics, University of Sevilla, Spain ²Max-Planck-Institute für Plasmaphysik, Greifswald Germany ³Auburn University, Auburn, AL, United States of America

25th Topical Conference on High Temperature Plasma Diagnostics 2024, Asheville

Charge eXchange Recombination Spectroscopy

- **CXRS**¹ \rightarrow Standard technique to infer T_i , v_Z , n_Z :
 - Spectral analysis of CX radiation upon NBI injection via spectrometers.

$$H^{0} + A^{Z+} \to H^{+} + A^{(Z-1)+*}$$

 $A^{(Z-1)+*} \to A^{(Z-1)+} + \gamma$

• Limited LOS # and spatial resolution.

Coherence Imaging Spectroscopy

- Coherence Imaging Spectroscopy (CIS)²
 - → 2D maps of relevant plasma parameters via polarization interferometry
- Existing CIS at W7-X³ → Impurity flows in the Scrape-Off Layer (SOL).
- Multi-Delay CIS for T_i in SOL \rightarrow M. Kriete et al., this conference, 1.3.2

Scrape-Off Layer (SOL) CIS

[Courtesy of V. Perseo, M. Kriete]

[2] J. Howard, J.Phys.B, 2010 [3] V. Perseo et al., RSI 2020

1

• **CICERS** \rightarrow Analysis of CX radiation with CIS:

- **CICERS** \rightarrow Analysis of CX radiation with CIS:
 - \circ 1D profiles → **2D maps**.

- **CICERS** \rightarrow Analysis of CX radiation with CIS:
 - \circ 1D profiles → **2D maps**.

- CICERS → Analysis of CX radiation with CIS:
 - \circ 1D profiles → **2D maps**.
 - Enhanced spatial resolution.
 - $\rightarrow \sim 10^5 \text{ LOS}$

- **CICERS** \rightarrow Analysis of CX radiation with CIS:
 - \circ 1D profiles → **2D maps**.
 - Enhanced spatial resolution.
 - $\rightarrow \sim 10^5 \text{ LOS}$
 - Imaging large part of poloidal cross section.

- **CICERS** \rightarrow Analysis of CX radiation with CIS:
 - \circ 1D profiles → **2D maps**.
 - Enhanced spatial resolution.
 - $ightarrow \sim 10^5$ LOS
 - Imaging large part of poloidal cross section.
 - Poor spectral resolution.

- Working principle
- Experimental arrangement
- Background radiation
- Ion temperature measurements
- Carbon impurity density measurements

Coherence Imaging Spectroscopy (CIS)

- CIS \rightarrow Polarization interferometry with birefringent crystals.
 - Single-delay approach: Birefringent crystal(s) + polarizers + sCMOS camera
 - \rightarrow Single interference pattern

[Courtesy of V. Perseo]

Wendelstein

Darallal frings nattorn:

$$S(x,y) = \frac{I_0(x,y)}{2} [1 + \zeta(x,y) \cos \Phi(x,y)] = \frac{500}{200} + \frac{500}{800} + \frac{500}{80} + \frac{500}$$

Parallel fringe pattern:

$$S(x,y) = \frac{I_0(x,y)}{2} [1 + \zeta(x,y) \cos \Phi(x,y)] \frac{1}{5} 7$$

• I_0, ζ, Φ retrieved via **2DFFT**

Interference pattern

Parallel fringe pattern:

$$S(x,y) = \frac{I_0(x,y)}{2} \left[1 + \zeta(x,y)\cos\Phi(x,y)\right]$$

• I_0, ζ, Φ retrieved via **2DFFT**

 I_0 : Intensity of CX radiation $\sim \propto n_Z$

Parallel fringe pattern:

$$S(x,y) = \frac{I_0(x,y)}{2} [1 + \boldsymbol{\zeta}(\boldsymbol{x},\boldsymbol{y}) \cos \Phi(x,y)]$$

- I_0, ζ, Φ retrieved via **2DFFT**
 - I_0 : Intensity of CX radiation $\sim \propto n_Z$
- ζ : **Contrast** \rightarrow Spectral broadening $\propto e^{-T_i}$

Interference pattern

Parallel fringe pattern:

$$S(x,y) = \frac{I_0(x,y)}{2} [1 + \zeta(x,y)\cos\Phi(\mathbf{x},\mathbf{y})]$$

- I_0, ζ, Φ retrieved via **2DFFT**
 - I_0 : Intensity of CX radiation $\sim \propto n_Z$
- ζ : **Contrast** \rightarrow Spectral broadening $\propto e^{-T_i}$
- Φ : **Phase shift** \rightarrow Wavelength shift $\propto v_Z$

Experimental arrangement

• Toroidal view → NBI sources S3, S4

Experimental arrangement

- Toroidal view → NBI sources S3, S4
- **Single-delay** approach:
 - Crystals optimized for high T_i (~ 2 keV)
 → Delay (2.5 mm)+ Savart (10+10 mm)
 Emission line → CVI(λ = 529.05 nm)

Experimental arrangement

- Toroidal view \rightarrow NBI sources S3, S4
- Single-delay approach:
 - Crystals optimized for high T_i (~ 2 keV)
 → Delay (2.5 mm)+ Savart (10+10 mm)
 Emission line → CVI(λ = 529.05 nm)
- Calibrations carried out with C-WAVE tunable laser:
 - V. Perseo et al., this conference, **1.2.30**
 - S. Akhundzada et al., this conference, 1.4.26
 - o R. Lopez-Cansino et al., PPCF 2024

• Typical **CXRS spectrum**:

• Typical **CXRS spectrum**:

 $\circ~$ Active CX ~

- CX with NBI neutrals

- Typical CXRS spectrum:
 - $\circ~$ Active CX ~
 - CX with NBI neutrals
 - \circ **Passive**
 - CX with edge neutrals
 - Electron-Impact excitation

Typical **CXRS spectrum**: • Active CX Passive 1.0 Active CX 0 Bremsstrahlung - CX with NBI neutrals 0.8 Passive 0 - CX with edge neutrals Intensity 6.0 - Electron-Impact excitation **Bremsstrahlung** 0

0.2

0.0**►** 527

529

Wavelength [nm]

530

531

528

Wavelength [nm]

• Typical CXRS spectrum:

$\circ~$ Active CX ~

- CX with NBI neutrals
- Passive
 - CX with edge neutrals
 - Electron-Impact excitation
- o Bremsstrahlung
- CICERS:
 - $\circ~$ Total spectrum encoded in fringe pattern.

→ Need strategies to **isolate the CX contribution** from contaminants!

How to isolate the active CX contribution

$$\boldsymbol{S} = \boldsymbol{S}_{\boldsymbol{C}\boldsymbol{X}} + \boldsymbol{S}_{\boldsymbol{p}\boldsymbol{a}\boldsymbol{s}} + \boldsymbol{S}_{\boldsymbol{B}} \qquad \qquad \boldsymbol{S}_i = \frac{I_i}{2}(1 + \zeta_i \cos \Phi_i)$$

$$\boldsymbol{S} = \boldsymbol{S}_{\boldsymbol{C}\boldsymbol{X}} + \boldsymbol{S}_{\boldsymbol{p}\boldsymbol{a}\boldsymbol{s}} + \boldsymbol{S}_{\boldsymbol{B}} \qquad S_i = \frac{I_i}{2}(1 + \zeta_i \cos \Phi_i)$$

 Active CX only appears with NBI → Interpolation of background radiation before and after injection and subtraction from total signal⁴

How to isolate the active CX contribution

• S is **linear** w.r.t each individual radiation component.

$$\mathbf{S} = \mathbf{S}_{CX} + \mathbf{S}_{pas} + \mathbf{S}_{B} \qquad S_{i} = \frac{I_{i}}{2} (1 + \zeta_{i} \cos \Phi_{i})$$

 Active CX only appears with NBI → Interpolation of background radiation before and after injection and subtraction from total signal⁴

$$\boldsymbol{S} = \boldsymbol{S}_{\boldsymbol{C}\boldsymbol{X}} + \boldsymbol{S}_{\boldsymbol{p}\boldsymbol{a}\boldsymbol{s}} + \boldsymbol{S}_{\boldsymbol{B}} \qquad S_i = \frac{I_i}{2}(1 + \zeta_i \cos \Phi_i)$$

- Active CX only appears with NBI → Interpolation of background radiation before and after injection and subtraction from total signal⁴
- Modelling background radiation:

$$S = S_{CX} + S_{pas} + S_B \qquad S_i = \frac{I_i}{2} (1 + \zeta_i \cos \Phi_i)$$

- Active CX only appears with NBI → Interpolation of background radiation before and after injection and subtraction from total signal⁴
- Modelling background radiation:

$$I_{CX} = I_{eff} - (I_{pas} + I_B)$$

$$\zeta_{aff} I_{aff} - \zeta_{pas} I_{pas}$$

$$\zeta_{CX} = \frac{\varsigma_{eff} - \varsigma_{pas} - \varsigma_{pas}}{I_{eff} - (I_{pas} + I_B)}$$

$$\boldsymbol{S} = \boldsymbol{S}_{\boldsymbol{C}\boldsymbol{X}} + \boldsymbol{S}_{\boldsymbol{p}\boldsymbol{a}\boldsymbol{s}} + \boldsymbol{S}_{\boldsymbol{B}} \qquad S_i = \frac{I_i}{2}(1 + \zeta_i \cos \Phi_i)$$

- Active CX only appears with NBI → Interpolation of background radiation before and after injection and subtraction from total signal⁴
- Modelling background radiation:

$$I_{CX} = I_{eff} - (I_{pas} + I_B)$$

$$\boldsymbol{\zeta_{CX}} = \frac{\boldsymbol{\zeta_{eff}}\boldsymbol{I_{eff}} - \boldsymbol{\zeta_{pas}}\boldsymbol{I_{pas}}}{\boldsymbol{I_{eff}} - (\boldsymbol{I_{pas}} + \boldsymbol{I_B})}$$

- I_{eff} , ζ_{eff} : effective parameters from raw signal
- **I**_B: Bremsstrahlung line-integrated intensity
- I_{pas} , ζ_{pas} : Passive line-integrated intensity and contrast

Modelling workflow: Grid

Modelling workflow: Bremsstrahlung contribution

Bremsstrahlung intensity

• $I_B \rightarrow n_e, T_e, Z_{eff}$ profiles:

Bremsstrahlung intensity

• $I_B \rightarrow n_e, T_e, Z_{eff}$ profiles:

Bremsstrahlung evolution along discharge

Able to predict $I_B \longrightarrow$ Quality of profiles

Modelling workflow: Bremsstrahlung contribution

Modelling workflow: Passive contribution

Dedicated spectrometer for passive CVI at W7-X.
 → O.P Ford et al, this conference, 3.4.33

- Dedicated spectrometer for passive CVI at W7-X.
 → O.P Ford et al, this conference, 3.4.33
- Tomographic inversion on CVI passive intensity:

44

Modelling workflow: Passive contribution

Modelling workflow: Passive contribution

- Dedicated spectrometer for passive CVI at W7-X.
 → O.P Ford et al, this conference, 3.4.33
- Tomographic inversion on CXRS CVI passive intensity.
 - \circ 1st order estimation of CVI passive emissivity
- I_{pas}, ζ_{pas} :

$$I_{pas} = \int_{LOS} \varepsilon(\rho) dl$$

$$\zeta_{pas} = \frac{\int_{LOS} \zeta(T_i, \boldsymbol{B}) \varepsilon(\rho) dl}{\int_{LOS} \varepsilon(\rho) dl}$$

- Dedicated spectrometer for passive CVI at W7-X.
 → O.P Ford et al, this conference, 3.4.33
- Tomographic inversion on CXRS CVI passive intensity.
 - \circ 1st order estimation of CVI passive emissivity
- I_{pas}, ζ_{pas} :

$$I_{pas} = \int_{LOS} \varepsilon(\rho) dl$$

$$\zeta_{pas} = \frac{\int_{LOS} \zeta(T_i, \boldsymbol{B}) \varepsilon(\rho) dl}{\int_{LOS} \varepsilon(\rho) dl}$$

- Dedicated spectrometer for passive CVI at W7-X.
 → O.P Ford et al, this conference, 3.4.33
- Tomographic inversion on CXRS CVI passive intensity.
 - \circ 1st order estimation of CVI passive emissivity
- I_{pas}, ζ_{pas} :

$$I_{pas} = \int_{LOS} \varepsilon(\rho) dl$$

$$\zeta_{pas} = \frac{\int_{LOS} \zeta(T_i, \boldsymbol{B}) \varepsilon(\rho) dl}{\int_{LOS} \varepsilon(\rho) dl}$$

49

Modelling workflow: Passive contribution

Modelling workflow: T_i

Modelling workflow:*T*_i

Modelling workflow: T_i

53

Good agreement with CXRS

- Overall good agreement with CXRS T_i profiles
- Slightly **higher** *T_i* towards the Edge
 - → Background radiation becomes more important
- Errors on I_B limits measurements with continuous **NBI** to low n_e plasmas.
- Higher n_e plasmas \rightarrow NBI blips

 T_i from ζ_{CX}

 T_i from ζ_{CX}

Modelling provides better T_i results than ROI-scaled interp.

• NBI MC-based modelling⁵: neutral density n_H for each energy component *E*.

- NBI MC-based modelling⁵: neutral density n_H for each energy component *E*.
- CICERS view implemented and recreation of *I*_{CX}

$$I_{C6+} = \frac{1}{4\pi} \sum_{E,i} \int_{LOS} n_H^{E,i} n_{C6+} \langle \sigma v \rangle_{CX}^{E,i} dl$$

- NBI MC-based modelling⁵: neutral density n_H for each energy component *E*.
- CICERS view implemented and recreation of I_{CX}

$$I_{C6+} = \frac{1}{4\pi} \sum_{E,i} \int_{LOS} n_H^{E,i} n_{C6+} \langle \sigma v \rangle_{CX}^{E,i} dl$$

- NBI MC-based modelling⁵: neutral density n_H for each energy component *E*.
- CICERS view implemented and recreation of I_{CX}

$$I_{C6+} = \frac{1}{4\pi} \sum_{E,i} \int_{LOS} n_H^{E,i} n_{C6+} \langle \sigma v \rangle_{CX}^{E,i} dl$$

- NBI MC-based modelling⁵: neutral density n_H for each energy component *E*.
- CICERS view implemented and recreation of I_{CX}

$$I_{C6+} = \frac{1}{4\pi} \sum_{E,i} \int_{LOS} n_H^{E,i} n_{C6+} \langle \sigma v \rangle_{CX}^{E,i} dl$$

- 5 cm shift in source position reported by bayesian BES modelling⁶ on S7/S8
- Shift in calorimeter loads due to magnetic field⁷

[5] C. Swee et al., PPCF 2022[6] S. Bannmann et al., JINST 2023[7] S. Lazerson et al., IAEA FEC 2023

2D Carbon impurity density maps

• pyFIDAsim **NBI modelling** to derive n_C

$$n_{C} = \frac{4\pi I_{CX}}{\sum_{E,i} \int_{LOS} n_{H}^{E,i} \langle \sigma v \rangle_{E,i} \, dl}$$

2D Carbon impurity density maps

• pyFIDAsim **NBI modelling** to derive n_C

2D Carbon impurity density maps

• pyFIDAsim **NBI modelling** to derive n_C

• NBI nominal power (1.8 MW) downscaled \times 0.6 to match CXRS n_c profile.

2D measurements on T_i flattening

• High n_e discharge, no proper background subtraction

2D measurements on T_i flattening

• Even in the absence of proper background subtraction, CICERS signal can be useful for interesting physics!

- First batch of experimental results with CICERS from W7-X OP2.1
- CICERS extends W7-X diagnostic capabilities:
 - 2D T_i measurements
 - **2D** n_C measurements
- Background radiation:
 - **Modelling approach:** good results at low n_e plasmas for continuous NBI injection.
 - Best: short NBI blips

Interferometer cell

- **Phase shift (\Phi)** depends on:
 - \circ Incidence of light w.r.t. crystal \rightarrow Experimental arrangement.
 - Wavelength of light \rightarrow Doppler effect $\rightarrow T_i, v_Z, n_Z$

[8] T. Romba et al., PPCF 2023

Beam modelling for better insight on signal localization

- **Consistent** spatial localization:
 - Closest approach (CA):
 Point of closest approach between LOS and beam axis.
 - Center of Mass $(COM)^8$:

$$s_{COM} = \frac{\int_{LOS} swdl}{\int_{LOS} w \, dl} \qquad \qquad w = \sum_{E,i} n_H^{E,i} \langle \sigma v \rangle_{CX}^{E,i}$$

- Assessment of **line-integrated** effects:
 - FWHM of weights along LOS

