

Gyselalib++

E.Bourne V. Grandgirard

Gysela Past and Future

Gysela (Fortran)

- 5D
- MPI/OpenMP
- Optimised up to 730k CPU cores
- Relative efficiency of 85% on more than 500k cores and 63% on 730k cores on CEA-HF (AMD EPYC 7763)
- Petascale resources: ~ 150 millions of hours / year (GENCI
 - + PRACE + HPC Fusion resources)

Gyselalib++ (C++) so far...

- 2D/4D
- MPI/Kokkos

EPFL Gyselalibxx

- CI:
 - unit tests
 - code conventions
 - best practices
 - common bug detection
 - forced documentation

Compilation Execution Dependencies - Pre-made build settings - Adding Documentation - Coding Standards - Common compilation problems - Using DDC in Gyselalbox	Gyselalib++ is a collection of C++ components for writing gyrokinetic semi-lagrangian codes and similar as well as a collection of such codes. It based on DDC. We strongly encourage new developers to begin by reading our documentation about Using DDC in Gyselalibxx. Set-up In order to set up Gyselalib++ on a new machine, simply run: Dit clonerecurse-submodules ditBaitlab.maisondelasimulation.fr:gysela-developers/gyselalibxx.git gyselalibxx.
Execution Dependencies Pre-made build settings - Adding Documentation - Coding Standards - Corremon compilation problems - Using DDC in Gyselallbxx	Gyselalib++ is a collection of C++ components for writing gyrokinetic semi-lagrangian codes and similar as well as a collection of such codes. It based on DDC. We strongly encourage new developers to begin by reading our documentation about Using DDC in Gyselalibxx. Set-up In order to set up Gyselalib++ on a new machine, simply run: Dit clonerecurse-submodules oitMotitlab.maisondelasimulation.fr:ovsela-developers/ovselalibxx.oit_ovselalibxx
Dependencies Pre-made build settings Adding Documentation Coding Standards Common compilation problems Using DDC in Gyselalibxx	based on DDC. We strongly encourage new developers to begin by reading our documentation about Using DDC in Gyselalibxx. Set-up In order to set up Gyselalib++ on a new machine, simply run: Dit clonerecurse-submodules difficitlab.maisondelasimulation.fr:gysela-developers/gyselalibxx.git gyselalibx
Pre-made build settings Adding Documentation Coding Standards Common compilation problems Using DDC in Gyselalibxx	Set-up In order to set up Gyselalib++ on a new machine, simply run: Dif clonerecurse-submodules difficitlab.mmisondelasimulation.fr:ovsela-developpers/ovselalibxx.oit ovselalibxx
Adding Documentation Coding Standards Common compilation problems Using DDC in Gyselalibxx	Set-up In order to set up Gyselalib++ on a new machine, simply run: nit clonerecurse-submodules oit#ditlab.maisondelasimulation.fr:ovsela-developpers/ovselalibxx.oit ovselalibxx
Coding Standards Common compilation problems Using DDC in Gyselalibxx	In order to set up Gyselalib++ on a new machine, simply run: nit clonerecurse-submodules nitMoitlab.mmisondelasimulation.fr:ovsela-developpers/ovselalibxx.git ovselalibxx
Common compilation problems Using DDC in Gyselalibxx	In order to set up Gyselalib++ on a new machine, simply run: ait clonerecurse-submodules ait@aitlab.maisondelasimulation.fr:avsela-developpers/avselalibxx.ait avselalibxx
Using DDC in Gyselalibxx	git clonerecurse-submodules git@gitlab.maisondelasimulation.fr:gysela-developpers/gyselalibxx.git gyselalibxx
Using Git	dd gyselalibxx
Developer's FAQ	() any matate - nors
Gyselalib++ simulations	or
Gyselalib++ contents	ait clonerecurse-submodules https://aitlab.maisondelasimulation.fr/avsela-developpers/avselalibxx.git
Gyselalib++ tests	gyselalibxx
Selalib++	./bin/install-hooks
API reference Files	on a machine for which Gyselalib++ is already used an environment script may be available to set up the necessary modules etc.
	Please check the folder toolchains to find the existing configurations. See the documentation about Pre-made build settings for more informati
	on the provided files.
	For example in order to set up the environment on the Adastra supercalculator simply run:
	source toolchains/mi250.hipcc.adastra.spack/prepare.sh source toolchains/mi250.hipcc.adastra.spack/environment.sh

https://github.com/gyselax/gyselalibxx/

EPFL Organisation

EPFL Roadmap

Work In Progress: Gysela-Axi

(2X-2V) semi-Lagrangian code for axisymmetric neoclassical simulations

- All the pieces of the puzzle are being put together
 - 2D advection in (r, θ) + 1D advection in v_{μ}
 - Non-uniform 1D and 2D splines including special treatment of the O-point
 - 2D poisson solver in (r, θ)
 - 2D collision operator (v_{μ}, μ)
 - translated from GYSELA F90 into C++ & Kokkos (3.79x speed up between 1 Genoa node and 1 AMD node)
 - libkoliop with an interface for both GYSELA F90 and Gysela-X++
 - MPI transposition
- Objective: end 2024 (EoCoE-III milestone)
 - Designed to work on multi-GPU optimization but also for physics:
 - Neoclassical effects with shaping and impurities

[PhD L. De Gianni]

EPFL VOICE - Vlasov Open boundary Ion Coupling to Electrons

GYSELA

5D Vlasov Solver

$$B_{\parallel s}^{*} \frac{\partial F_{s}}{\partial t} + \nabla \cdot \left(\frac{dx_{G}}{dt} B_{\parallel s}^{*} F_{s}\right) + \frac{\partial}{\partial v_{G\parallel}} \left(\frac{dv_{G\parallel}}{dt} B_{\parallel s}^{*} F_{s}\right)$$
$$= C(F_{s}) + S + K_{buff}(F_{s}) + D_{buff}(F_{s})$$

- Backward semi-Lagrangian Advection on uniform cubic splines
- Penalisation for walls
- Collision operator

3D Poisson Solver

$$\begin{split} & \frac{e}{T_{e,eq}} \left(\phi - \langle \phi \rangle \right) - \frac{1}{n_{e0}} \sum_{s} Z_{s} \nabla_{\perp} \cdot \left(\frac{n_{s,eq}}{B \Omega_{s}} \nabla_{\perp} \phi \right) \\ & = \frac{1}{n_{e0}} \sum_{s} Z_{s} \int J_{0} \cdot \left(F_{s} - F_{s,eq} \right) d^{3} v \end{split}$$

- Finite Elements in (r, θ)
- Fourier Transform in φ

VOICE

2D Vlasov Solver

$$\begin{split} \partial_t f_s(t, x, v) &+ v \partial_x f_s(t, x, v) - \frac{q_s}{m_s} \partial_x \phi(t, x) \partial_v f_s(t, x, v) \\ &= C_{ss}(t, x, v) + S_{s, w_1} + S_{s, w_2} + S_{s, k} \end{split}$$

- Backward semi-Lagrangian Advection on arbitrary degree splines (SeLaLib)
- Penalisation for walls
- Collision operator

1D Poisson Solver

$$-\partial_x^2 \phi(t,x) = \frac{1}{\varepsilon_0} \sum_x Z_s \int f_s(t,x,v) dv$$

• Finite Elements

EPFL VOICE - Vlasov Open boundary Ion Coupling to Electrons

$$\begin{aligned} \partial_{t}f_{s}(t,x,v) + v\partial_{x}f_{s}(t,x,v) - \frac{q_{s}}{m_{s}}\partial_{x}\phi(t,x)\partial_{v}f_{s}(t,x,v) &= S_{s}(t,x,v) + C_{ss}(t,x,v) \\ \partial_{x}^{2}\phi(t,x) &= -\frac{\rho_{q}(t,x)}{\varepsilon_{0}} \qquad n_{s}(t,x) = \int f_{s}(t,x,v)dv \qquad \rho_{q}(t,x) = \sum_{s}q_{s}n_{s}(t,x) \\ C_{ss}(t,x,v) &= \partial_{v} \left[D_{v}(t,x,y(x,v))\partial_{v}f_{s}(t,x,v) + f_{s}(t,x,v)D_{v}(t,x,y(x,v))m_{s}\frac{v - V_{M}(t,x)}{T_{M}(t,x)} \right] \\ S_{s,w_{1}}(t,x,v) &= -v_{s,w_{1}}(t,x)\mathcal{M}_{w_{1}}(x)[f_{s}(t,x,v) - g_{s,w}(n_{w},T_{w_{1}},v)] \\ S_{s,w_{2}}(t,x,v) &= -v_{w_{2}}\mathcal{M}_{w_{2}}(x) \left[f_{s}(t,x,v) - g_{s,w}(n_{s}(t,x),T_{w_{2}}(t),v) \right] \\ S_{s,k}(t,x,v) &= \frac{\mathcal{M}_{k}(x)}{\int_{0}^{L_{x}}\mathcal{M}_{k}(x')dx'} \frac{s_{k}\sqrt{m_{s}}}{\sqrt{2\pi T_{k}}} e^{-\frac{m_{s}v^{2}}{2T_{k}}} \end{aligned}$$

• See [E. Bourne et al., 2023] for numerics & [Y. Munschy et al., 2023] for physics

EPFL Voicexx first GPU implementation

≡ Timeline View ▼	Options		💷 Q. 🗆 1x (<u>) 15 messages</u>
	3s 🗸	+650ms +660ms +670ms +680ms	+690ms +700ms +710ms +720ms +720ms +730ms +740ms +750ms +760ms +770ms +780ms +790ms
 CPU (32) 		0	
✓ CUDA HW (0000:1d:00.0 - N	VIDIA. M	Kernel	
 [All Streams] 	Ŧ	andra fa hel a le anta 🖉 📒	
▶ 96.1% Stream 16			
▶ 3.9% Default stream 7			
 Threads (8) 			
▼ ▼ [3598263] sheath_xpe	riod		
	-	Time step [133.426	Time step [128.640 ms] Time step [136.3.
▶ NVTX	+	C Collisionsl QNS HDF5_Output [30.611 ms]	_ CollisionsL_ Collisi. BslAdvectionSpatial [1_ BslAd. BslAdvectionSpatial [1_ Col CollisionsL Coll CollisionsL Coll BslAdvectionSpatial [1_ BslAdvectionSpatial [1_ Col CollisionsL CNS_ HDF5_
		and monitor and the state	
CUDA API	Ŧ	hinht SmithOld is	
Profiler overhead	2		
7 threads hidden	-+ 0 to	100%	
NVTX		July NOR 1	
		4	۳ ۵

EPFL Overlapping I/O and computations

EPFL Voicexx first GPU optimisations

E Timeline View ▼ © 0	ptions		(i) <u>15 messages</u>
4s •		+80ms +90ms +100ms +110ms +120ms +130ms +140ms +150ms +150ms +160ms +170ms +180ms	+190m *
 CPU (32) 	100% C		
- CUDA HW (0000:1d:00.0 - NVIDIA .	Kerne Memory	MARKE DE LA FELANNE DE LA DE LA DE LA FELANDE DE LA FELANDE DE LA	AS AL STREET, AND
 [All Streams] 			
▶ 96.4% Stream 16			
▶ 3.6% Default stream 7			
- Threads (18)			
▼ ▼ [119804] sheath_xperiod_ •	0 to 100%		
			munnun
		Time step (97.490 mg)	Time step [97 467 ms]
+ NVTX		[Collis_CollisionsIntra_][ONSol_] [K.] [CollisionsIntra_] Collisi.] BelAdvectionSpatial [10.654.] BelAdvectionSpatial [10.77.] [Collis.] CollisionsIntra_][ONSol_] [K.] [CollisionsIntra_] [Collisi.] BelAdvectionSpatial [10.788.] BelAdvectionSpatial [10.575.] [Collis.] CollisionsIntra_] [L.] [ONSol_] [K.] [CollisionsIntra_] [L.] [ONSol_] [K.] [CollisionsIntra_] [L.] [ONSol_] [K.] [CollisionsIntra_] [L.] [ONSol_] [K.] [CollisionsIntra_] [L.] [CollisionsIntra_] [L.] [ONSol_] [K.] [CollisionsIntra_] [L.] [CollisionsIntra_] [Kr CollisionsInt
		FFTP. FFTP.	
			Theone is the
CUDA API			
Profiler overhead			
✓ [119830] libstdc++.so.6.0.3 +	0 to 100%		
NUTY			
Desflar such and		[ain eeu.sc] JudjuoQu'anii	
Promer overhead	0.1.4000		
To threads hidden+	U to TUU%		
NVTX			UNIX NO
			al l llibain aibhit

EPFL Strong Scaling on Leonardo (A100)

EPFL Strong Scaling comparisons

CPU versus GPU

GPU: NVIDIA V100

GPU: AMD-MI250X

Gysela-X++: Challenges

H Bufferand et al 2022 Plasma Phys. Control. Fusion 64 055001

Patches are required to manage the geometry

- Poisson over patches
 - → SL scheme for multi-patches [P. Vidal (IPP) PhD 2022-2025]
- Advection over patches
 - \rightarrow 2D multi-patch Poisson solver

[A. Hoffmann (IPP) PhD 2023-2026]

- MPI load balancing

EPFL Conclusions

- First results from Voicexx are very promising
 - Good scaling
 - Large number of points in X is possible
 - Portable on both Nvidia and AMD GPUs
 - Detailed comparisons with the Fortran version should be carried out
- Gysela-Axi is almost ready
 - Larger simulation will give more pertinent performance analyses
 - First simulation with wide interest for physicists
- Work on GyselaX++ is progressing well
 - Patches are non-trivial but will allow new physical studies

EPFL VOICE - Vlasov Open boundary Ion Coupling to Electrons

- Poisson solver : FEM (spline basis)
- Advection : semi-Lagrange (spline basis)
- Collision operator : FDM
- Source terms : Runge-Kutta
- Output for diagnostics

Preliminary performance (only collisions in Vpar)

- · What do I measure ?
 - I use a modified CLK_begin_collisions_vpar timer
 - With and without the MPI transposition (before and after the collision computation)
 - Aka, collvparmu_general_main_routine duration or only the computation duration
 - Koliop block size: 128x32x4
- Speedup
 - Run it optimally on one Genoa node (using master: c9203580)
 - · Parallelization characteristics: 1 node, 32 ranks per node, 6 OMP thread/Rank.
 - time for collisions in vpar=11,8 s (no MPI transposition)
 - time for collisions in vpar-17,5 s
 - Run it optimally on one MI250 node (using gysela: 8a932eb and koliop: 34e6ffc)
 - Parallelization characteristics: 1 node, 8 ranks per node, 8 OMP thread/rank, 1 GCD/rank.
 - time for collisions in vpar=3,11 s (no MPI transposition)
 - time for collisions in vpar=20,1 s
 - Measured speedup: x3,79 (no MPI transposition)
 - Measured speedup: x0,87
 - · Significant issue with the transposition
- Energy consumption
 - TODO: I need to exclude the energy spent on the CPU part of Gysela when running the GPU simulation.

Preliminary performance (only collisions in Vpar)

- Choose a large test case (at the node level)
 - Must fit in memory of the *smallest* node
 - Lots of CPU memory taken by the operator (in fortran, not koliop) due to the transposition stuff
 - fdistribu5d_t%values -> f5d_s_seqx4x5
 - Leads to a reduced test case.
 - Based on bench/forGPU/MPI8_Nthread32_512x512x32x64x1_TKE
 - NPROC_MU=4/Nmu=3
 - Nr=255
 - Ntheta=256
 - Nphi=32
 - Nvpar=127
 - Nbiter=8 (4 collision iterations)
 - No diag except Ni
 - Note that a low Nmu count is disadvantageous to the operator (Nmu x Nvpar loops in most kernels), real workloads may perform better.