
■ SCITAS

EPFL-ACH
Pr. Paolo Ricci (Academic Director & PI)

Dr. Gilles Fourestey (Operations Director)

■ SCITAS

EPFL-ACH in a nutshell

(~30 people)

■ SCITAS

A comprehensive support, from HPC code design
to visualization

We are a competence center for
- methods, providing specific support to specific needs
- applications, developing and maintaining EUROfusion
software

■ SCITAS

An attractor of new expertise to fusion…

■ SCITAS

… to an even larger involvement

■ SCITAS

Large voluntary contribution

■ SCITAS

GPU porting of ASCOT5 code for Monte Carlo simulations in
fusion plasmas

M. Peybernes, G. Fourestey, S. Äkäslompolo, K. Särkimäki, J. Varje, F. Spiga

HPC ACH F2F Meeting

■ SCITAS

▪ ASCOT5 is a test particle orbit-following code for toroidal magnetically confined fusion devices
▪ The code uses the Monte Carlo method to solve the distribution of particles by following their

trajectories.
• The evolution of the distribution function for a test particle species a is described by the

Fokker-Planck equation

and approximated by the Langevin equation for a large number of markers that represent the
distributed function:

▪ The particles undergo collisions with a static Maxwellian
background plasma

▪ The detailed magnetic fields and the first wall can be
fully 3D

▪ MPI, TLP (OpenMP, task-based), DLP (SIMD)

ASCOT5

■ SCITAS

■ MPI - OpenMP - SIMD implementation:
○ The time evolutions of each particle are independent from

each other, particles having different lifetimes

○ One + two levels of parallelism:

■ MPI: Particles distributed among tasks, fields
replicated

■ OpenMP: queue based approach

■ SIMD: each lane handles a particule during its lifetime
(events) independently

○ swapping mechanism

■ after each iteration, particles that have reached their
end condition are stored in an array for completed
particles

■ a fresh particle is retrieved from a queue to continue
simulation in the particular slot in the NSIMD arrays

9

ASCOT5 CPU version

■ SCITAS

■ First implementation History-Based:
○ parallelism is expressed at a high level, emphasizing

the independence of individual particles

○ each GPU thread deals with the entire history of
one or more particles until all of the particles have
reached their end condition

○ this parallelism is implemented through a single
monolithic GPU kernel

Results:
May2022 Benchmark Comparison

GPU and CPU versions have similar TTS
(in general)

10

ASCOT5 GPU version

ASCOT5 TTS [s] may2022_2dwall_go_analyticB

markers: 10000 100000

Platform Compiler

m100@CINECA
OpenMP
Offload 46 473 Power9 + v100 XL compilers

Phoenix@EPFL
OpenMP
Offload 232 2143 6138 gold + v100 gcc 11

Phoenix@EPFL OpenACC 48 261 6138 fold + v100 gcc 11

Helvetios@EPFL OpenMP 87 860 2x Gold 6140 intel compilers

Jed@EPFL OpenMP 31 318 2x Platinum 8360Y intel compilers

■ SCITAS

■ GPU porting strategy
➢ Maintain a single version of the code

➢ Ensure code portability and readability

➢ Generic pragma for OpenMP/OpenACC

11

ASCOT5 GPU version

#ifndef gpu_commands
#define gpu_commands
/**
 * @brief Applies parallel execution to loops
 */
#if defined(GPU) && defined(_OPENMP)
#define GPU_PARALLEL_LOOP_ALL_LEVELS \

str_pragma(omp target teams distribute parallel for simd)
#elif defined(GPU) && defined(_OPENACC)
#define GPU_PARALLEL_LOOP_ALL_LEVELS str_pragma(acc parallel loop)
#else
#define GPU_PARALLEL_LOOP_ALL_LEVELS str_pragma(omp simd)
#endif

/**
 * @brief Maps variables to the target device
 */
#if defined(GPU) && defined(_OPENMP)
#define GPU_MAP_TO_DEVICE(...) \

str_pragma(omp target enter data map (to: __VA_ARGS__))
#elif defined(GPU) && defined(_OPENACC)
#define GPU_MAP_TO_DEVICE(...) str_pragma(acc enter data copyin
(__VA_ARGS__))
#else
#define GPU_MAP_TO_DEVICE(...)
#endif
............

#endif
#endif

 GPU_LOOP_ALL_LEVELS
 for(i = 0; i < n_queue_size; i++) {
 if(p->running[i]) {
 posxyz[0] = posxyz0[0] + pxyz[0] * h[i] / (2.0 * gamma * mass);
 posxyz[1] = posxyz0[1] + pxyz[1] * h[i] / (2.0 * gamma * mass);
 posxyz[2] = posxyz0[2] + pxyz[2] * h[i] / (2.0 * gamma * mass);
 }
 GPU_END_LOOP_ALL_LEVELS

■ SCITAS

■ The original implementation is not GPU-friendly:
○ one very large kernel (1000+ threads/kernel)
○ events depend on the previous event

■ Implement a new version by splitting the initial kernel:
○ Parallelize over events instead of particles
○ small kernels independent of each other

12

ASCOT5 GPU version

■ SCITAS

■ Implement a new version by splitting the initial kernel:
○ parallelize over events instead of particles
○ small kernels independent of each other
○ pack particles to avoid thread divergence and unbalance

ASCOT5 GPU version

■ SCITAS

■ Benchmark:
○ Collisional full-orbit simulation of prompt-losses of fusion alpha particles
○ 2D wall; ITER-like but circular equilibrium interpolated with cubic splines
○ 2D wall rectangular, coulomb collisions, gyro orbit, simulation time = 0.0001s, fixed time step
○ Leonardo: A100, nvhpc/23.1
○ Comparison of three GPU implementations on GPU A100

■ Event-based packing algorithm is most efficient in all cases
■ Impact of Packing:

● test_loadBalanced: Minimal impact due to majority of particles reaching end of simulation
● test_loadUnbalanced: Significant impact with speedup of up to 1.41 compared to history-based

algorithm and up to 1.22 compared to event-based one.

14

Benchmarks

Comparison of the 3 particle-following GPU implementations - 1
Millions markers - 1 A100

Comparison of the 3 particle-following GPU implementations -
10 Millions markers - 4 A100

■ SCITAS

■ Lower Local Memory Use: Event-based packing
uses multiple smaller kernels, reducing local
memory demands versus the history-based
version.

■ Efficient Data Transfer: Minimal data transfer
overhead as all kernels run on the GPU.

■ Optimized Memory Access: Contiguous,
coalesced memory access through packing
enhances efficiency.

■ Reduced Loop Bounds: Through packing step,
dynamic loop bounds improve runtime
performance, with only ~30% particles active per
timestep.

15

Profiling Nsys

■ SCITAS
16

Profiling

■ EventBased version:
○ kernels mostly memory-bound
○ multiple branch divergences in end_condition kernel

involving lower Memory SOL due to thread divergence

Main kernels %

move_particle 64.8

diagnostics 9.6

end_condition 6.5

collisions 5.8

copy_particles_structures 5.5

sorting < 0.1

packing < 0.1

TABLE I. RELATIVE WEIGHTS OF THE DIFFERENT STEPS OF THE SIMULATION ON
A100. % VALUES ARE AVERAGED SIMULATING 1 MILLION PARTICLES

WITH THE ASCOT5 EVENT-BASED-PACKING ALGORITHM

Main kernels Memory
SOL (%)

Compute
SOL (%)

move_particle 68 30

diagnostics 80 26

end_condition 36 12

collisions 40 56

TABLE II. TEST_LOADBALANCED, SPEED OF LIGHT - 1 MILLION PARTICLES WITH
THE ASCOT5 EVENT-BASED-PACKING ALGORITHM

■ SCITAS

■ 10M markers Benchmark:
○ Collisional full-orbit simulation of prompt-losses of fusion alpha particles
○ 2D wall; ITER-like but circular equilibrium interpolated with cubic splines
○ 2D wall rectangular, coulomb collisions, gyro orbit, simulation time = 0.0001s, fixed time step
○ Jed: 2x Platinum 8360Y, intel/2021.6.0
○ Leonardo: A100, nvhpc/23.1
○ NVIDIA Grace Hopper Superchip engineering sample early access courtesy of NVIDIA
○ NVIDIA Grace-Grace
○ Intel Ponte-Vecchio 600W engineering sample early access courtesy of INTEL

17

Benchmarks

■ SCITAS
18

Conclusion

● Successful GPU Transition: ASCOT5 was efficiently ported from CPU to GPU
using a directive-based strategy, ensuring code consistency.

● Optimized Algorithms: Three strategies were tested, with event-based-packing
achieving the best performance due to improved load balancing and reduced
thread divergence.

● Significant Speedup: Event-based-packing on H100-96GB shows up to 6x
speedup over a dual Intel Xeon CPU node.

● ACOT5-GPU is now fully imported into the master version

● Several groups have started using it

● Future Work: Conduct new tests incorporating enhanced physical models.

