
Progress on the ORB5 and GENE3D codes
E. Lanti and P. Panchal

2nd Annual Meeting of EUROfusion HPC ACHs
Wed. 27th of November 2024, Barcelona

■ SCITAS

A
C

H
 2

02
4

- O
R

B
5

an
d

G
E

N
E

3D
 -

B
ar

ce
lo

na

ORB5
Let’s jump back ten years ago

“An investigation into the library-based approach, using Kokkos, from a “mini-app” such
as GK-Engine [...]”

A little bit of ORB5 history
▪ In 2015 began a big work of merge, refactoring, optimization, and GPU porting
▪ Requirements were portability, single source code, and “ease of use”
▪ OpenMP and OpenACC chosen for multithreading and GPU support
▪ We chose to use mini apps

○ Pic-Engine: very simple app retaining the PIC main routines (push, deposition, solve,
and get field)

○ GK-Engine: mini version of ORB5
▪ We used the experience from the mini app into ORB5

○ ORB5 ran on 90% of Summit with good scaling up to ~6000 GPUs [Ohana, et al. (2019)]

■ SCITAS

A
C

H
 2

02
4

- O
R

B
5

an
d

G
E

N
E

3D
 -

B
ar

ce
lo

na

Lessons learned
▪ OpenACC is not portable (mainly works with NVIDIA)

○ OpenMP offload being implemented (T. Ewart (Intel), V-M. Yli-Suutala (CSC))
○ But compiler support is OKish

▪ While both Open{MP,ACC} allow a single source code, in reality it is not always
the case
○ Annotations are simply ignored if not using multi-threading or GPUs

ORB5
Back to today

Explore a library-based approach using Kokkos
▪ Kokkos is designed to be performance portable
▪ They used an abstract model of a compute node that must be accounted for since

the beginning
○ Abstract engine
○ Abstract memory placement
○ Abstract memory layout

■ SCITAS

A
C

H
 2

02
4

- O
R

B
5

an
d

G
E

N
E

3D
 -

B
ar

ce
lo

na

ORB5
Back to today

Fortran is not an option anymore
▪ Fortran just works™

○ It benefits from decades of experience and is amazingly performant on CPU
▪ Fortran and Kokkos don’t mix well together [N. Moschüring (2021)]
▪ But it lacks an ecosystem

○ Support for new hardware and new language features are very slow
○ Very few (good) tools around the language (linter, formatter, etc.)

We chose C++ as a replacement
▪ Zero-cost abstraction
▪ Big momentum to make the language evolve towards scientific computing
▪ Community guidelines to write safer, cleaner, and faster code
▪ A lot of tooling
▪ Quick implementation of the standard (you can already try C++26!)

■ SCITAS

A
C

H
 2

02
4

- O
R

B
5

an
d

G
E

N
E

3D
 -

B
ar

ce
lo

na

ORB5
GkEngine++

▪ C++ version of the Gk-Engine (limited to ES physics with adiabatic e-)
○ Build system using Modern CMake
○ Testing using Catch2 framework
○ Reproduces Gk-Engine results

▪ Experiment with different design approaches
▪ Two iterations

○ One with custom “NDField” emulating Fortran arrays
○ One with Kokkos (currently only for CPU)

■ SCITAS

A
C

H
 2

02
4

- O
R

B
5

an
d

G
E

N
E

3D
 -

B
ar

ce
lo

na

ORB5
GkEngine++ vs Gk-Engine

▪ Fortran is very performant out of the box!
▪ Once tackled an inlining problem with the C++ version performance is comparable
▪ Not a totally fair comparison because not all the languages capabilities were

accounted for

■ SCITAS

A
C

H
 2

02
4

- O
R

B
5

an
d

G
E

N
E

3D
 -

B
ar

ce
lo

na

ORB5
An OpenMP scaling using Kokkos

▪ Recompiled with Kokkos OpenMP backend
▪ “Naive” implementation, no optimizations made
▪ Ran on the Jed production cluster @ EPFL

○ 2 x 36 cores compute nodes

■ SCITAS

A
C

H
 2

02
4

- O
R

B
5

an
d

G
E

N
E

3D
 -

B
ar

ce
lo

na

ORB5
Conclusions

▪ Implemented a new C++ test-bed based on the Gk-Engine
▪ Can be used to test various technologies such as Kokkos

▪ First experience in porting a production Fortran code to another language
▪ Performance are comparable, but need to be careful with C++ features we use

▪ Finish the Kokkos implementation to work on GPUs
▪ Polish the implementation

○ Better C++ (no copy/paste of Fortran code)
○ Optimize the Kokkos porting

▪ Try C++ std::algorithm which could make the code more declarative

■ SCITAS

A
C

H
 2

02
4

- O
R

B
5

an
d

G
E

N
E

3D
 -

B
ar

ce
lo

na

Improving Linear Solve Times

■ SCITAS

A
C

H
 2

02
4

- O
R

B
5

an
d

G
E

N
E

3D
 -

B
ar

ce
lo

na

Linear System

● Independent induction linear systems (67584 X 67584, GENE3D)

● Invertible, symmetric system matrix. Multiple solves.
● Goal: fastest multi solve using one GPU (one node)

■ SCITAS

A
C

H
 2

02
4

- O
R

B
5

an
d

G
E

N
E

3D
 -

B
ar

ce
lo

na

● Direct solver
○ LU: superludist, matsolverstrumpack

● Indirect solver
○ CG
○ GMRES

● Preconditioners
○ Jacobi
○ BJacobi
○ PBJacobi
○ SOR
○ None
○ BoomerAMG: Hypre
○ ILU: Matsolverstrumpack

Solvers & Preconditioners in Petsc

■ SCITAS

A
C

H
 2

02
4

- O
R

B
5

an
d

G
E

N
E

3D
 -

B
ar

ce
lo

na

Results

● Superludist, CPU: 0.708914

● Jacobi, GPU
○ CG: 0.005638 (125X)

○ GMRES: 0.006632 (107X)

● Boomeramg, GPU
○ CG: 0.012828 (55X)

○ GMRES: 0.012116 (58X)

● None, GPU
○ CG: 0.007063 (100X)

○ GMRES: 0.008353 (85X)

10 solve reps, 0 initial guess, RTOL 1e-5, 8 OMP threads

No GPU + float support in strumpack!

■ SCITAS

A
C

H
 2

02
4

- O
R

B
5

an
d

G
E

N
E

3D
 -

B
ar

ce
lo

na

Results

● Superludist, CPU: 0.708914

● Jacobi, GPU
○ CG: 0.005638 (125X)

○ GMRES: 0.006632 (107X)

● Boomeramg, GPU
○ CG: 0.012828 (55X)

○ GMRES: 0.012116 (58X)

● None, GPU
○ CG: 0.007063 (100X)

○ GMRES: 0.008353 (85X)

10 solve reps, 0 initial guess, RTOL 1e-5, 8 OMP threads

■ SCITAS

A
C

H
 2

02
4

- O
R

B
5

an
d

G
E

N
E

3D
 -

B
ar

ce
lo

na

Detailed Picture

■ SCITAS

A
C

H
 2

02
4

- O
R

B
5

an
d

G
E

N
E

3D
 -

B
ar

ce
lo

na

MPI vs OpenMP

MPI parallelization gives better scaling than OpenMP. Still slower than GPU.

■ SCITAS

A
C

H
 2

02
4

- O
R

B
5

an
d

G
E

N
E

3D
 -

B
ar

ce
lo

na

Single Solve Times

■ SCITAS

A
C

H
 2

02
4

- O
R

B
5

an
d

G
E

N
E

3D
 -

B
ar

ce
lo

na

Combining Linear Systems

~30% improvement. Best batch size depends on hardware and problem size.

■ SCITAS

A
C

H
 2

02
4

- O
R

B
5

an
d

G
E

N
E

3D
 -

B
ar

ce
lo

na

Summary

● Well conditioned systems. Performance gain with iterative solver.
● Lowest timings with Jacobi preconditioner on GPU
● Batching systems can improve performance per system
● Similar results for double precision (RTOL=1e-12)

■ SCITAS

A
C

H
 2

02
4

- O
R

B
5

an
d

G
E

N
E

3D
 -

B
ar

ce
lo

na

Thank you!

