=PiL

o) .
{_)) EUROfusion
\=¥

3 : |
|
N l A bo .
s L 2
8
; : t i‘t ’
¥ |
: ‘ il ‘.
| L . J. "~ t |
B .- f f l c . . ‘
L , : B : 3 .
e ' * : -3 ' (hed
\d : * | 4
! \ }
. k ‘
’2 1 : : - \}
' " - IR 3
]!'-’ | * . s : x
’Y { ‘ -
. h . s
(. ‘n : " : :
| { . T
. = .
f ! e, : -

Progress on the ORBS5 and GENE3D codes

E. Lanti and P. Panchal

2nd Annual Meeting of EUROfusion HPC ACHs
Wed. 27th of November 2024, Barcelona

Colubitele hifefulafete U EagQeicfeintdei-tde 2w Qe

B Sreianay e Tde e TN T

!
8

R Y]

el

eten

=PrL

= SCITAS

ORB5

Let’s jump back ten years ago

“An investigation into the library-based approach, using Kokkos, from a “mini-app” such
as GK-Engine [...]”

A little bit of ORB5 history

In 2015 began a big work of merge, refactoring, optimization, and GPU porting
Requirements were portability, single source code, and “ease of use”
OpenMP and OpenACC chosen for multithreading and GPU support
We chose to use mini apps
O Pic-Engine: very simple app retaining the PIC main routines (push, deposition, solve,
and get field)
O GK-Engine: mini version of ORB5
We used the experience from the mini app into ORB5
O ORBS ran on 90% of Summit with good scaling up to ~6000 GPUs [Ohana, et al. (2019)]

ACH 2024 - ORB5 and GENE3D - Barcelona

=PrL

= SCITAS

ORB5

Back to today

Lessons learned

= OpenACC is not portable (mainly works with NVIDIA)
O OpenMP offload being implemented (T. Ewart (Intel), V-M. Yli-Suutala (CSC))
O But compiler support is OK's"
= While both Open{MP,ACC} allow a single source code, in reality it is not always
the case
O Annotations are simply ignored if not using multi-threading or GPUs

Explore a library-based approach using Kokkos

= Kokkos is designed to be performance portable
= They used an abstract model of a compute node that must be accounted for since
the beginning
O Abstract engine
O Abstract memory placement
O Abstract memory layout

ACH 2024 - ORB5 and GENE3D - Barcelona

=PrL

= SCITAS

ORB5

Back to today

Fortran is not an option anymore

= Fortran just works™

O It benefits from decades of experience and is amazingly performant on CPU
= Fortran and Kokkos don’t mix well together [N. Moschuring (2021)]
= But it lacks an ecosystem

O Support for new hardware and new language features are very slow

O Very few (good) tools around the language (linter, formatter, etc.)

We chose C++ as a replacement

= Zero-cost abstraction

= Big momentum to make the language evolve towards scientific computing
= Community guidelines to write safer, cleaner, and faster code

= Alot of tooling

= Quick implementation of the standard (you can already try C++26!)

ACH 2024 - ORB5 and GENE3D - Barcelona

=PrL
©

= SCITAS

ORB5

GkEngine++

= C++ version of the Gk-Engine (limited to ES physics with adiabatic ")
O Build system using Modern CMake
O Testing using Catch2 framework
O Reproduces Gk-Engine results
= Experiment with different design approaches
= Two iterations
O One with custom “NDField” emulating Fortran arrays
O One with Kokkos (currently only for CPU)

1 1
Guiding center data 1 Larmor ring data 1 Field data
I 1

aEry .

@ v
o B om

ACH 2024 - ORB5 and GENE3D - Barcelona

=PrL
©

= SCITAS

ORB5

GkEngine++ vs Gk-Engine

Fortran vs C++

I Fortran
e C++

100

10—1 4

10—2 4

Build Larmor Deposition Get field Gyroaverage Push

= Fortran is very performant out of the box!

= Once tackled an inlining problem with the C++ version performance is comparable

= Not a totally fair comparison because not all the languages capabilities were
accounted for

ACH 2024 - ORB5 and GENE3D - Barcelona

=PrL

= SCITAS

ORB5

An OpenMP scaling using Kokkos

OpenMP strong scaling

64 4 Ideal ,
Build Larmor
Deposition
Get field
Gyroaverage

Push

32

16 -

Recompiled with Kokkos OpenMP backend
“Naive” implementation, no optimizations made
Ran on the Jed production cluster @ EPFL

©)

2 x 36 cores compute nodes

ACH 2024 - ORB5 and GENE3D - Barcelona

=PrL

= SCITAS

ORB5

Conclusions

Implemented a new C++ test-bed based on the Gk-Engine
Can be used to test various technologies such as Kokkos

First experience in porting a production Fortran code to another language
Performance are comparable, but need to be careful with C++ features we use

Finish the Kokkos implementation to work on GPUs
Polish the implementation
O Better C++ (no copy/paste of Fortran code)
O Optimize the Kokkos porting
Try C++ std::algorithm which could make the code more declarative

ACH 2024 - ORB5 and GENE3D - Barcelona

=PrL

= SCITAS

Improving Linear Solve Times

ACH 2024 - ORB5 and GENE3D - Barcelona

EPFL Linear System
O

e Independent induction linear systems (67584 X 67584, GENE3D)

Axi4q = by

e Invertible, symmetric system matrix. Multiple solves.
e (Goal: fastest multi solve using one GPU (one node)

= SCITAS

ACH 2024 - ORB5 and GENE3D - Barcelona

E;f'— Solvers & Preconditioners in Petsc
®

e Direct solver
O LU: superludist, matsolverstrumpack
e Indirect solver

O CG
O GMRES
e Preconditioners
O Jacobi
O BJacobi
O PBJacobi
O SOR
O None
O BoomerAMG: Hypre
O ILU: Matsolverstrumpack

= SCITAS

ACH 2024 - ORB5 and GENE3D - Barcelona

EPFL Results
@)

10 solve reps, 0 initial guess, RTOL 1e-5, 8 OMP threads

Multi Solve Float

M CGCPU W CGGPU [GMRESCPU [l GMRES GPU
1.00
0.75
0.50
(]
E
'—
0.25
0.00
© O N NS & © & o &
Q Q O W
o F £ & & & & &
¢ N
N \v

No GPU + float support in strumpack!

= SCITAS

Superludist, CPU: 0.708914
Jacobi, GPU

O CG: 0.005638 (125X)

O GMRES: 0.006632 (107X)
Boomeramg, GPU

O CG: 0.012828 (55X)

O GMRES: 0.012116 (58X)
None, GPU

O CG: 0.007063 (100X)

O GMRES: 0.008353 (85X)

ACH 2024 - ORB5 and GENE3D - Barcelona

EPFL Results
@)

10 solve reps, 0 initial guess, RTOL 1e-5, 8 OMP threads

Fastest Multi Solve Timings GPU
B CGGPU B GMRES GPU
0.015

0.010

Time

0.005

0.000
Jacobi PBJacobi NONE BoomerAMG

= SCITAS

Superludist, CPU: 0.708914
Jacobi, GPU

O CG: 0.005638 (125X)

O GMRES: 0.006632 (107X)
Boomeramg, GPU

O CG: 0.012828 (55X)

O GMRES: 0.012116 (58X)
None, GPU

O CG: 0.007063 (100X)

O GMRES: 0.008353 (85X)

ACH 2024 - ORB5 and GENE3D - Barcelona

=PrL
©

= SCITAS

Detailed Picture

Jacobi GPU Timings
== Solve CG == Multi solve CG Multi solve GMRES == Solve GMRES

0.06

Time

M

0.00

25 50 75 100 125

Timing GPU None

== Multi Solve CG == Multi Solve GMRES Solve CG == Solve GMRES

0.05

0.04

Time

0.02

001 WMW

0.00

25 50 75 100 125

System No.

Jacobi GPU lterations
== CG == GMRES
40

30

20

Iterations

10

25 50 75 100 125

Iterations GPU None

== CG == GMRES

» Wm
20
[%2]
=4
o
2
8
10
0
25 50 75 100 125
System

ACH 2024 - ORB5 and GENE3D - Barcelona

ePFL - MPI vs OpenMP

78
O

B CG8OMP | GMRES 8 OMP CG8MPI [GMRES 8 MPI
0.8

0.6
0.

0.

0.0

F
=

multi solve float

MPI parallelization gives better scaling than OpenMP. Still slower than GPU.

= SCITAS

ACH 2024 - ORB5 and GENE3D - Barcelona

=PrL

Va~\\

Single Solve Times

Single Solve Float

500

400

300

200

100

B CGCPU [CGGPU

GMRES CPU [GMRES GPU

= SCITAS

single solve float

Jacobi
BJacobi
PBJacobi

SOR

NONE
BoomerAMG
LU Strumpack
ILU Strumpack
Superludist
GAMG

CG CPU
0.50064319
1.84949445
0.48510424
0.55560877
0.59539174

303.3960821
137.4881985
439.893405
8.33106824

CG GPU
0.05048592
1.47379133
0.08007748
0.37520636
0.03165935
0.53952125

X

X

288.8324603

GMRES CPU GMRES GPU

0.51290324
1.85742948
0.51653043

0.6288359
0.63849132

302.9836172 X

137.8905305 X
439.893405
8.32431857

0.05984553
1.46874508
0.09410313
0.39709109
0.04757844
0.54845973

288.8324603

ACH 2024 - ORB5 and GENE3D - Barcelona

£PFL Combining Linear Systems

®)
\op
Batched Jacobi Timings (GPU) Batched Multi Solve Timings None
== CG == GMRES == CG == GMRES
0.008 0.0100
0.006 K 0.0075 \\
g 0004 — 2 0.0050 \
= =
0.002 0.0025
0.000 0.0000
5 10 15 20 25 5 10 15 20 25
Baich ope Batch Size

~30% improvement. Best batch size depends on hardware and problem size.

= SCITAS

ACH 2024 - ORB5 and GENE3D - Barcelona

=PrL

= SCITAS

Summary

Well conditioned systems. Performance gain with iterative solver.
Lowest timings with Jacobi preconditioner on GPU

Batching systems can improve performance per system

Similar results for double precision (RTOL=1e-12)

ACH 2024 - ORB5 and GENE3D - Barcelona

=PrL

= SCITAS

Thank you!

ACH 2024 - ORB5 and GENE3D - Barcelona

