
■ SCITAS

ACH Meeting
November 2024

Nicola Varini

■ SCITAS

GBS
Nicola Varini

■ SCITAS

Overview

▪ Benchmark on Tier-0 systems

▪ LUMI vs Leonardo vs PizDaint@ALPS

▪ Take away from GPU porting

■ SCITAS

Leonardo vs Lumi vs Daint@ALPS - Time-to-solution

▪ TCV@0.9T
○ Nx = 300
○ Ny = 600
○ Nz = 128

▪ Benchmarks:
○ Leonardo: 4 A100/node
○ LUMI: 128 EPYC

7763/node
○ Daint: 4 GH200/node

▪ bc_model_yb='Tar'
bc_model_yt='pAT'
bc_model_xr='pAT'
bc_model_xl='Mag'

■ SCITAS

Scaling

▪ We used strong scaling along Z

CU NX(CPU-GPU) NY(CPU-GPU) NZ

4 128 1 128 1 4

8 128 1 128 1 8

16 128 1 128 1 16

32 128 1 128 1 32

64 128 1 128 1 64

■ SCITAS

Solvers

▪ Performed by PETSc
○ GMRES solver
○ HYPRE BoomerAMG preconditioner
○ The number of unknown is fixed to the size of the poloidal plane

▪ The Poisson solver is twice faster on Leonardo compared to Lumi
▪ The Ampere solver performance are comparable

■ SCITAS

Stencil computation: parallel gradients

▪ Parallelization
○ CPU - 128 MPI tasks
○ GPU - 1 CUDA GPU
○ Strong scaling in z

CU Stencil size per node

4 300x600x32

8 300x600x16

16 300x600x8

32 300x600x4

64 300x600x2

▪ GPU perform well with a lot of data

■ SCITAS

MPI Communication

▪ The MPI communication
is far worse on GPU

▪ We used CUDA aware MPI
and GPU Direct

▪ For CPU there’s
communication inside a
poloidal plane

■ SCITAS

Shift of bottleneck

▪ The routines ported on
GPU are performing
well

○ 2X improvement in
Poisson

○ Improvement in
stencil - the more
data the better

▪ On GPU, performance
degrade more with
scaling.

▪ For bigger system, we
should expect better
GPU performance

(Poisson+Ampere+Parallal_grad)/TTS
nodes Lumi Leonardo Daint

4 0.82 0.76 0.46
8 0.82 0.74 0.43

16 0.77 0.71 0.39
32 0.76 0.63 0.31
64 0.69 0.53 0.25

■ SCITAS

Future development

▪ The CUDA routines are performing as expected.
▪ CUDA force the developers to maintain two versions of the code.
▪ Shift of bottlenecks after the GPU porting

○ The most expensive routines go from 70% on CPU to 30% on GPU

■ SCITAS

GRILLIX
Nicola Varini and Andreas Stegmeir

■ SCITAS

▪ The solver2d is performed
by parallax:

○ Collaboration for GPU
porting

▪ The solver3d will be
ported on GPU by ACH

▪ The RHS will be ported to
GPU last.

GRILLIX

■ SCITAS

The 3D solver applied to heat flux solver

In its most basic form, the provided matvec routine does the following:
(see GRILLIX: src/solver_aligned3d/solve_aligned3d_s.f90)

- Send/receive u to/from rank+1/rank-1
- Multiply Q*u blockwise →heat flux q
- Send/receive q to/from rank-1/rank+1
- Multiply P*q blockwise
- Note the different dimensionalities of quantities, since P and Q are generally non-square,

representing canonical and staggered mesh)

Reminder:

■ SCITAS

Strategy for GPU porting

Miniapp injection
back into the

main codes

● Benchmarks definition and
strategy.

● Profiling.

MINIAPPS
● Proof-of-concept for spmv
● Performance analysis

■ SCITAS

!$omp parallel do
do i = 1, nrows

do j = rows(i),rows(i+1)-1

 y_fortran(i) = y_fortran(i) + vals(j)*x(cols(j))

end do

 end do

!$omp end parallel do

SPMV - Fortran version

● Currently the sparse matrix vector
product is performed on CPU with
OpenMP

● Baseline version

■ SCITAS

extern "C" void compute_spmv_(csrspmv *& p){

 csrspmv::ViewI& rows = *(p->rows);

 csrspmv::ViewI& cols = *(p->cols);

 csrspmv::ViewD& vals = *(p->vals);

 csrspmv::ViewD& x = *(p->x);

 csrspmv::ViewD& y = *(p->y);

 Kokkos::parallel_for(y.extent(0), KOKKOS_LAMBDA(const size_t idy){

for(int idx=rows(idy);idx<rows(idy+1);idx++){

 y(idy) = y(idy)+ vals(idx)*x(cols(idx));

}

 });

}

SPMV - Kokkos version

 call allocate_kokkos_view(kokkos_view,
 nrows, nnz, rows, cols, vals, x, y_kokkos)
 call compute_spmv(kokkos_view)

C++

Fortran

● The C++ routine is called from Fortran
● L2norm(y_fortran-y_kokkos) = 3E-14
● Succesfull offload observed with nsys

■ SCITAS

▪ We can also perform the sparse
matrix-vector operation

▪ L2norm(y_cuda-y_fortran)
=2.5E-14

▪ Successful kernel generation
observed with nsys

SPMV - CUDA version

■ SCITAS

▪ Nvtx events in nsys
▪ We can see the cusparse library in

the timeline

Benchmark and profiling

■ SCITAS

▪ We would like to leave the door open to different paradigms.
▪ The SPMV operation in grillix is performed in different routines

○ We need to choose the right level of abstraction

▪ Benchmarks
○ In-depth comparison between OpenMP threads and CUDA

Next steps

