

Gaurav Saxena (HLST)
David Vicente Dorca (Head, User Support)

SOLPS-ITER

BSC-ACH Meeting | 27th Nov. 2024

Presentation Code

RGB Presentation Color Code

Bad / Alarm

Good / Improvement

Keyword / Code

File name (can ignore)

What is SOLPS-ITER ?

SOLPS-

• Scrape-Off Layer Plasma Simulation (boundary plasma)

• Monte Carlo code Eirene (MPI parallelized)

• B2.5 Plasma Fluid solver (OpenMP parallelized) -

Improve scaling (Our Focus)

• Fortran 77 (fixed form), Fortran 90

• ITER = International Thermonuclear Experimental Reactor

ITER

ITER

Recap (2023)

(Very) Brief Recap (on MN4 in 2023)
• Re-wrote get_num_threads() function (5.6 - 17% time reduction at 12 & 48

threads, respectively).

• Added: -xHost -align-array-64byte -qopt-zmm-usage=high (Intel 18.x), enabled

KMP_AFFINITY (≈ 36% time reduction at 48 threads)

• Explored “hot cache” effect in b2xpfe.F by removing n > 16384 condition in parallel

sfill() function and removing indirect accesses by a pattern (24.5% time reduction

for this loop but retracted as pattern not general)

• Removed unneeded critical sections (4.45x Speed-up Vs 1.23x original)

• Loop in fka() vectorized using !$OMP SIMD (as -fp-model=precise prevented

vectorization), copied 3rd dimensions of 2 arrays to auxiliary array for unit strides

(new function fka_new()).

Threads Before Time
(sec)

Before Sp After Time
(sec)

After Sp Contig
Time

Contig Sp

1 957 1.00 937 1.00 890 1.00

2 596 1.60 577 1.62 555 1.60

4 388 2.46 373 2.51 367 2.42

12 251 3.80 241 3.88 242 3.67

24 210 4.55 203 4.61 208 4.27

48 215 4.45 208 4.50 211 4.21

ITER_2171_D+He+Be+Ne Scaling
‘b2mndr_ntim’ ‘100’, standalone OpenMP, 21 species, #ifndef NO_OPENMP_B2SIFRTF, critical sections removed

❖ After vectorization of loop in function fka() [although non-unit stride]
❖ ACTUAL speed-ups: 957/tx i.e. 1.72, 2.60, 3.95, 4.60 and 4.53

Overview 2024

2024 overview
● Continued working in fka_new() subroutine

● Concentrated on Zhdanov closure scheme

● Identified multiple hotspots: b2sifr_ , b2tfnb, and ma30bd

● … (specifically) serial bottlenecks b2txcy, b2stbr_phys and b2sihs

● Migration to MN5

● Assistance for porting code to Red-Hat Linux nodes at ITER.

● Assistance for removing extremely critical bugs when using gfortran.

● ⭐ All changes incorporated in SOLPS-ITER official release 3.0.9/3.1.1.

Work in 2024

Loop inside fka_new()

(1) sqrt(am(isb)*am(is)/(am(isb)+am(is))
is calculated again and again,
takes ~ 46/109 seconds

(2) Calculate all combinations
outside fka_new like:

do j = 0, ns-1

 do i = 0, ns-1

 am_sqrt(i,j) = sqrt(am(j)*am(i)/(am(j)+am(i))

 end do

end do

Look up table !

Modifying fka_new()
fka_new(ix,iy,a,rz2_temp,na_temp,am_sqrt)
real (kind=R8) :: am_sqrt(0:ns-1,0:ns-1)

…
…
fka_new = fka_new + … * am_sqrt(r,a)

…
…

(1) Removes repeated calculation
(2) 2 memory accesses → 1 access

Before and After - I

Before: 46.309 sec

After: 0.792 sec

Before and After - II

fka_new → Before: 109.73 sec
fka_new_opt→ After: 34.86 sec
But …
b2sifrtf → Before: 95.45 sec
b2sifrtf → After: 99.203

Net gain = 70 sec

Threads Before
Time (sec)

Before Sp After
Time
(sec)

After Sp Contig
Time

Contig
Sp

Sqrt Opt
Time

Sqrt Opt
Sp

1 957 1.00 937 1.00 890 1.00 820 1.00

2 596 1.60 577 1.62 555 1.60 513 1.6

4 388 2.46 373 2.51 367 2.42 345 2.37

12 251 3.80 241 3.88 242 3.67 232 3.53

24 210 4.55 203 4.61 208 4.27 203 4.03

48 215 4.45 208 4.50 211 4.21 210 3.90

ITER_2171_D+He+Be+Ne Scaling
‘b2mndr_ntim’ ‘100’, standalone OpenMP, 21 species, #ifndef NO_OPENMP_B2SIFRTF, critical sections removed

(1) After vectorization of loop in function fka() [although non-unit stride]
(2) (1) + Contiguous stride optimization
(3) (1) + (2) + Square Root optimization

-20 -47 -70

2024

Zhdanov Closure scheme

Zhdanov scheme: ITER_Be-W_D+T+He+Ne/run_Zhdanov
• 98 species (quite high)

• In run_Zhdanov directory, some switches in b2mn.dat

– b2mndr_ntim ‘50’

– b2mndr_elapsed ‘0.0’

– b2mndr_eirene ‘0’

• Hotspots (1 thread):

– b2sifr_ = 31.36 sec

– b2tfnb = 28.28 sec

– ma30bd = 16.86 sec

b2sifr_() in b2sifr_.F

Calculate outside loop.

Time of “statement” reduces from:

 12 sec → 5.66 sec (i.e. ≈ 50%)

Single thread b2sifr_() i.e. complete subroutine timings
● b2sifr_() previous time: 31.36 sec
● b2sifr_() current time: 26.12 sec
● Reduction : (31.36 - 26.12)/31.36 ≈ 16%

b2sifr_() loop not vectorized → Vectorized

b2sifr_() vectorization attempt
● Similar code for styl0.eq.1 (loop 2) and styl0.eq.2 (loop 3)

● Loop is vectorized !

● Timing (sec) for b2sifr_():

31.36 → 26.12 → 7.26

● Time Reduction b2sifr_(): (31.36 - 7.26)/31.36 x 100 = 76.85%

● roxa() in loops 2 and 3 is a function ! (Loop with function call never a
candidate for vectorization)

Total run time ITER_Be*/run_Zhdanov (b2mndr_ntim ‘100’)

Threads Time (sec) Sp
Time(sec)

b2sifr_() OPT
Sp

b2sifr_() OPT

1 247 1 222 1

2 170 1.45 157 1.41

4 133 1.85 125 1.78

8 113 2.19 108 2.05

16 104 2.45 101 2.20

24 101 2.45 99 2.24

48 101 2.45 97 2.29

-25

Serial bottlenecks

● No parallel part in b2txcy, b2stbr_phys and b2sihs

● Now parallelized 4 loops in b2txcy

○ b2txcy() Speed-up at 24 threads = S1/SP = 12.442/0.72 = 17.28x

● Function call hy1() in b2txcy() loops prevents vectorization

○ Declaring function as pure does not inline it.

○ !DIR$ ATTRIBUTES FORCEINLINE :: hy1 - does not forcefully

inline hy1() [option only for Intel Fortran Compiler]

○ [Later] solved using -ipo compiler option

b2stbr_phys() subroutine in b2stbr_phys.F
● Total time for b2stbr_phys() 11.926 sec when b2mndr_ntim ‘100’.

Loop: 331 - 339,
approx 5.8 secs

Loop: 517 - 524
approx 5.6 secs

● Total 4 instances, only 2 within another do loop
● 2 instances outside outer do loop are NOT time intensive
● 2 instances parallelized, b2stbr_phys() takes 0.69 secs (24 threads) i.e. S =

11.93/0.69 = 17.28x (but vectorization broken !)

* Add !$OMP SIMD to innermost loop

*Note: MN5 ifort produced compilation error with !$OMP SIMD,
● Canonical structure of loop disrupted
● Later can use COLLAPSE(2)
● Then use !$OMP SIMD REDUCTION(+:b2stbr_phys_sna) in the innermost loop.

Total run time ITER_Be/run_Zhdanov with b2mndr_ntim ‘100’

Threads Time (sec) Sp (3rd column)

1 424 442 416 1

2 285 289 276 1.50

4 216 217 207 2

8 182 177 173 2.40

16 166 158 158 2.63

24 164 154 155 2.68

48 160 152 152 2.73

1 2 3

smin() and smax()
● Both serial subroutines

● Not vectorized due to -fp-model=precise

● Parallelization increases time rather than decrease time !

● Vectorized by adding !$OMP SIMD combined with reduction clause

● smin() decrease at ‘b2mndr_ntim’ 100, (8.71-2.71)/8.71 x 100 =

68.89%

● smax() decrease at ‘b2mndr_ntim 100’, (4.58 - 1.14)/4.58 x 100 =

75.11%

Total run time ITER_Be*/run_Zhdanov with b2mndr_ntim ‘100’

Threads Time (sec) Sp

1 416 408 1

2 276 269 1.52

4 207 201 2.02

8 173 168 2.42

16 158 149 2.73

24 155 147 2.77

48 152 144 2.83

prev now

Migration to Marenostrum5

Migrating to Marenostrum 5 (MN5)
● Compiled with oneapi/2024.1 but since libcilkrtl.so.* missing, switched to

oneapi/2023.2

● MSCL compiled using ifx/ifort, a function prototype in date2.c changed.

● The core files compiled using ifort

● Very consistent 38 - 40% time reduction for corresponding core (thread)

count between MN4 and MN5 (when thread affinity respected).

● Turned on -ipo flag to aid inlining of small functions (which help with

vectorization as well) → time reduction

● Loops in b2sihs_.F parallelized

Developers Experiments

Comparison Table (Multiple Examples)
[Intermediate performance improvements courtesy Xavier Bonnin]

Test
Case

AUG_16151_D+C+He
standalone

100 timesteps

AUG_16151_D+C+He
coupled

10 timesteps

ITER_535_D+He+Ar
standalone

100 timesteps

ITER_2171_D+He+Be+Ne
standalone

100 timesteps

1 thread 6 threads 1 thread 4 threads 1 thread 6 threads 1 thread 7 threads

After
2023

10.298s 7.615s
(35%)

8m58s 4m09s
(116%)

2m43s 1m24s
(94%)

16m13s 6m12s
(162%)

In 2024 6.240s 3.508s
(78%)

5m30s 2m30s
(120%)

1m48s 0m45s
(140%)

10m22s 3m17s
(216%)

Improv. 65% 117% 63% 66% 32% 86% 56% 88%

Further …
● Provided assistance for porting code to Red-Hat Linux nodes in ITER.

● Provided assistance for removing critical bugs when using gfortran.

● All changes incorporated in release 3.0.9/3.1.1.

● Presented work in SOLPS-ITER 61st, 62nd, 63rd, and 66th User-Forum

Meetings.

Many thanks to Xavier Bonnin & David Coster. We are humbled and
honored by their kind words and encouragement 🙏.

Acknowledgement

Thank you !
For any questions:

Gaurav Saxena

(gaurav.saxena@bsc.es)

&

David Vicente Dorca

(david.vicente@bsc.es)

=

mailto:gaurav.saxena@bsc.es
mailto:david.vicente@bsc.es

