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Improve LU decomposition of response matrix
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\f) LU Decomposition on Marenostrum 4

Scaling-results obtained on Marenostrum 4 of the global LU decomposition
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-- Transfer efficiency - 89.92 83.55 79.28 E
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-- Instruction scalability - 100.00 66.81 40.02
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Input options: vmec_filename = 'wout_ref_003.nc', nzed=60, nx = 10, ny = 50
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(_J) Porting to ScaLAPACK on Marenostrum 5
=

Scaling-results obtained on Marenostrum 5 of the ScaLAPACK LU decomp.
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-- Parallel efficiency - 84.50 66.17 81.80 58.50
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-- Communication efficiency - 95.22 76.82 91.38 84.24 3
-- Serialization efficiency - 97.40 97.28 93.04 85.50 ki g
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-- Computation scalability - 100.00 99.17 99.15 99.09 [ E
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-- Instruction scalability - 100.00 100.79 101.33 101.47 20
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Input options: vmec_filename = 'wout_ref 003.nc', nzed=60, nx = 10, ny = 50
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() Summary & Future Work

® ScalAPACK LU outperforms current implementation (on Marenostrum 5)

Order of magnitudes less MPI Collectives in ScaLAPACK implementation

o Tradeoff: Keep the matrices distributed and add additional communication in timestep OR
memory overhead of storing them in every process.

Integrate back substitution and verify correctness (currently only partially done)
Integrate our work into new code-base (major update released)

Try SLATE (as a ScaLAPACK successor) to allow hybrid parallelism

Analyze the newly released version.
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Background

ERO2.0 is a 3D Monte-Carlo code for simulating wall erosion and impurity
transport through plasma and subsequent redeposition. [1]

[11 J Romazanov, D Borodin, A Kirschner, S Brezinsek, S Silburn, A Huber, V Huber, H Bufferand, M Firdaouss, D Brommel, et
al . 2017. First ERO2. 0 modeling of Be erosion and non-local transport in JET ITER-like wall. Physica scripta 2017,
T170(2017), 014018
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@) Background

[ We observe load imbalance in MP| and ]

Useful Duration @ ero2.32nodes.iit prv
THREAD 1.92.1 [™=
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The amount of instruction per computational
burst correlates with the useful duration.




@) Guided Chunksize
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@) Guided Chunksize
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@D Dynamic timeOut
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@) Dynamic timeOut

THREAD 1.102.1 5 .. 3,793,131,202 us
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) New OpenMP Schema
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Worker spawns an OpenMP
parallel for each cunk

— We observe load imbalance for each
m— i — = parallel region, and none of the Rank
T Er—— & 0’s threads do any computation.
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OpenMP threads receive }
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- < MPI Rank O does take part in the
= e computation.
\ J
4 )
. —— No load imbalance observed during the
- L computation phase. )
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@) Scalability results
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Execution time

) , , MPI/OpenMP configurations
ERO2.0, JET - Machine comparison ERO2.0, JET, 4 nodes @ MN4
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(O) DEMO Input

Chunk Size @ ero2.demo.prv
R i

Number of particles sent per chunk
decreases according to the guided

policy.

Chunk Duration @ ero2.demo.prv

However, the chunks with higher load
arrive later, where we don’t have as
much malleability.




@) Results
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Execution with the master
branch code.

\ / H filter H filter H filter I filter H filter H filter l filter ’ ‘:
19h49m 10 7447 12457 124.57 000 9312 3545
With the optimized 16h43m 10 124.18 124.18 o.oo- 37.39

124.71 12471 0.00- 37.91

branch code, we achieve —  choem 10
at least 18% speedup.
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@) MPI/OpenMP Configuration Results

MPI/OpenMP configurations

MPI/OpenMP configurations
ERO2.0, JET, 4 nodes @ JURECA ERO2.0, JET, 4 nodes @ MN4
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r) Conclusions

® Currently working on with bigger input sets (DEMO).
® Performance improvements
Achieve up to with a JET input with Marenostrum4.
Preliminary results on the DEMO input achieve up to in Jureca.

ERO2.0 code parallelization.
Identified main bottleneck - Load Imbalance.
Original code already considered the Load Imbalance.
Then our optimizations focussed on improving the load balancing strategy.

the code by
Guided chunksize: without compromising MPI Overhead!
Dynamic timeout: that become a bottleneck.

New OpenMP parallelization: Use MPI in OpenMP, to remove OpenMP load imbalance.
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