=PrL
,&

)
&

s
(.

= SCITAS

EPFL-ACH
Pr. Paolo Ricci (Academic Director & PI)
Dr. Gilles Fourestey (Operations Director)

=PrL

78
O

= SCITAS

EPFL-ACH in a nutshell

— Support center for HPC

B SCITAS applications and provider
Scientific IT and Application Support Of advanced Computi ng

platforms (~30 people)
Virtual, augmented, mixed

Experiment 3 reality, through advanced
Museolog computer science and
+ state-of-the-art visualization

facilities (~10 people)

Computational Science and
Engineering Mathematics
group (~70 people)

Swiss Data Science Center,
national institute for artificial
intelligence and machine learning
techniques (~50 people)

7)
@) EUROfusion

§P§Wi SS (~ 200 people,
Plasma . theory group:
Center | ~ 40 people)

E"éwiss
Plasma
Center

=PFL A comprehensive support, from HPC code design

/7'\\\ [] [] []
() to visualization

We are a competence center for
- methods, providing specific support to specific needs

- applications, developing and maintaining EUROfusion
software

DESIGN IMPLEMENTATION m VISUALIZATION

= SCITAS

E;:\'— An attractor of new expertise to fusion...
7N

= SCITAS

= SCITAS

... to an even larger involvement

=PFL Large voluntary contribution
e
=

mPPY@70% ®mPPY@0% mPPY voluntary

2021 2022 2023 2024 2025

= SCITAS

GPU porting of ASCOT5 code for Monte Carlo simulations in
fusion plasmas

M. Peybernes, G. Fourestey, S. Akidslompolo, K. Sarkimiki, J. Varje, F. Spiga

HPC ACH F2F Meeting

PFL "Swiss

7 >
/\\'\\\ '\) EUROfusion ‘SCITAS Plasma A | @z intel.
“ Center ™ NVIDIA.

/

= SCITAS

EPFL ASCOT5 A

= ASCOT5 is a test particle orbit-following code for toroidal magnetically confined fusion devices

= The code uses the Monte Carlo method to solve the distribution of particles by following their
trajectories.

* The evolution of the distribution function for a test particle species ais described by the
Fokker-Planck equation 5
ot

and approximated by the Langevin equatlon for alarge number of markers that represent the

distributed function:
dz = [z + a(z,t)| dt + o (z,t) - AW

+v-Vf,+ (E-I-VXB vfa_z = Vg [aabfa v'(Dabfa)]

background plasma
= The detailed magnetic fields and the first wall can be
fully 3D

= MPI, TLP (OpenMP, task-based), DLP (SIMD)

= SCITAS

=prr. ASCOT5 CPU version

=
)
=
m MPI-0penMP - SIMD implementation:

o Thetime evolutions of each particle are independent from
each other, particles having different lifetimes

© One+two levels of parallelism:

m MPI: Particles distributed among tasks, fields
replicated

m OpenMP: queue based approach

m SIMD: each lane handles a particule during its lifetime
(events)independently

O swapping mechanism

m after eachiteration, particles that have reached their
end condition are stored in an array for completed
particles

m afreshparticleisretrieved from a queue to continue

simulation in the particular slot in the N, arrays

= SCITAS

A

Aalto University

Algorithm 1: CPU multithread vectorized algorithm

initialization;
#pragma omp parallel
while particles are alive in packy,,,,, do

#pragma omp simd

for particles € packyy,,,, do
’ move_particle;

end

#pragma omp simd

for particles € packyy,,,, do
| collisions;

end

#pragma omp simd

for particles € packny,,,, do
’ end_condition;

end

#pragma omp simd

for particles € pack
| diagnostics;

end

for particles € packny,,,, do

if particle reached end condition then
| store particle and replace it by new one
end
end

do

Nsimp

end

cPFL ASCOT5 GPU version

(//f’ M

L
=
m First implementation History-Based:
o parallelism is expressed at a high level, emphasizing
the independence of individual particles

o each GPU thread deals with the entire history of
one or more particles until all of the particles have
reached their end condition

o this parallelism is implemented through a single
monolithic GPU kernel

Results: ASCOT5 TTS [s]
May2022 Benchmark Comparison markers:
. .. OpenMP
GPU and CPU versions have similar TTS m100@CINECA Offload
. I OpenMP
(in general) Phoenix@EPFL Offload
Phoenix@EPFL OpenACC
Helvetios@EPFL OpenMP
Jed@EPFL OpenMP

= SCITAS

A

Aalto University

Algorithm 2: GPU algorithm - History-based

initialization;
#pragma acc parallel loop
for all particles € {1...Nyo} do
while particle is alive do
move_particle;
collisions;
end_condition;
diagnostics;
end
end

may2022_2dwall_go_analyticB

10000 100000
Platform
Power9 + v100
232 2143 6138 gold + v100
48 261 6138 fold + v100
87 860 2x Gold 6140
31 318 2x Platinum 8360Y

Compiler

XL compilers

gce 11
gcc 11
intel compilers

intel compilers

cPFL ASCOT5 GPU version

e

\:./&

= SCITAS

m GPU porting strategy

> Maintain a single version of the code
> Ensure code portability and readability
> Generic pragma for OpenMP/OpenACC

#ifndef gpu_commands

#define gpu_commands

/ * *

* Q@brief Applies parallel execution to loops

*/

#if defined(GPU) && defined (OPENMP)

#define GPU_PARALLEL_LOOP_ALL_LEVELS\

str_pragma omp target teams distribute parallel for simd

#elif defined(GPU) && defined (OPENACC)
#define GPU_PARALLEL LOOP_ALL_ LEVELSstr_pragma @cc parallel loop
#else
#define GPU_PARALLEL LOOP_ALL LEVELSstr_pragma ()
#endif

/ * *

* Q@brief Maps variables to the target device

*/
#if defined(GPU) && defined (OPENMP)
#define GPU_MAP_TO_DEVICHK(...) \

str_pragma (omp target enter data map(to: _ VA ARGS_))

#elif defined(GPU) && defined (OPENACC)
#define GPU_MAP_TO_DEVICE(...) str_pragma@cc enter data copyin
(__VA ARGS_))
#else
#define GPU_MAP_TO_DEVICK...)
#endif
#endif
#endif

A

Aalto University

GPU_LOOP_ALL_LEVELS

for(i = 0; i < n_queue_size; i++) {
if (p->running[i]) {
posxyz[0] = posxyz0[0] + pxyz[0] * h[i] / (2.0 * gamma * mass);
posxyz[1l] = posxyzO0[1l] + pxyz[l] * h[i] / (2.0 * gamma * mass);
posxyz[2] = posxyz0[2] + pxyz[2] * h[i] / (2.0 * gamma * mass);

}
GPU_END_LOOP_ALL_LEVELS

11

cPFL ASCOT5 GPU version

2\

\

= SCITAS

"4

m The original implementation is not GPU-friendly:
o one very large kernel (1000+ threads/kernel)
o events dependon the previous event

m Implement a new version by splitting the initial kernel:
o Parallelize over events instead of particles
o small kernels independent of each other

SUCCESSFUL VECTORIZATION — REACTOR PHYSICS MONTE CARLO CODE

William R. MARTIN !
Department of Nuclear Engineering, University of Michigan, Ann Arbor, M1 48109-2104, USA

Most particle transport Monte Carlo codes in use today are based on the “history-based™ algorithm, wherein one particle
history at a time is simulated. Unfortunately, the *history-based™ approach (present in all Monte Carlo codes until recent
years) is inherently scalar and cannot be vectorized. In particular, the history-based algorithm cannot take advantage of vector
architectures, which characterize the largest and fastest computers at the current time. vector supercomputers such as the Cray
X/MP or IBM 3090/600. However, substantial progress has been made in recent vears in developing and implementing a
vectorized Monte Carlo algorithm. This algorithm follows portions of many particle histories at the same time and forms the
basis for all successful vectorized Monte Carlo codes that are in use today. This paper describes the basic vectorized algorithm
along with descriptions of several variations that have been developed by different researchers for specific applications. These
applications have been mainly in the arcas of neutron transport in nuclear reactor and shielding analysis and photon transport
in fusion plasmas. The relative merits of the various approach schemes will be discussed and the present status of known
vectorization cfforts will be summarized along with available timing results, including results from the successful vectorization
of 3-D general geometry, continuous energy Monte Carlo.

A

Aalto University

Algorithm 3: GPU algorithm - Event-based

initialization;
while number of particles alive > 0 do

#pragma acc parallel loop
for all particles € {1...Ny,,} do
if particle alive then
| move_particle;
end
end
#pragma acc parallel loop
for all particles € {1...Ny,} do
if particle alive then
‘ collisions;
end
end
#pragma acc parallel loop
for all particles € {1...Nyoi} do
if particle alive then
end_condition;
end
end
#pragma acc parallel loop
for all particles € {1...Nyoi} do
if particle alive then
| diagnostics;
end
end

end

12

cPFL ASCOT5 GPU version

o SR
&Jﬂ m Implement a new version by splitting the initial kernel:
— o parallelize over events instead of particles

o small kernels independent of each other

o pack particles to avoid thread divergence and unbalance

Algorithm 2: GPU algorithm - History-based Algorithm 3: GPU algorithm - Event-based

A

Aalto University

initialization;
while number of particles alive > 0 do
#pragma acc parallel loop
for all particles € {1...Ny,,} do
if particle alive then
move_particle;

initialization;
#pragma acc parallel loop
for all particles € {1...No1} do
while particle is alive do
move_particle;

collisions; end
end_condition; end
diagnostics; #pragma acc parallel loop
end for all particles € {1...Ny,;} do
end if particle alive then
‘ collisions;
end

end
#pragma acc parallel loop
for all particles € {1...Nyo1} do
if particle alive then
\ end_condition;
end
end
#pragma acc parallel loop
for all particles € {1...Nyo,} do
if particle alive then
‘ diagnostics;
end
end

= SCITAS end

Algorithm 4: GPU algorithm - Event-based - packing

initialization;
Npack = Niots

while number of particles alive > 0 do

#pragma acc parallel loop

for packed particles still alive
| move_particle;

end

#pragma acc parallel loop

for packed particles still alive
| collisions;

end

#pragma acc parallel loop

for packed particles still alive
| end_condition;

end

#pragma acc parallel loop

for packed particles still alive
| diagnostics;

end

pack particles;
Npack & Nrunnings
end

end

€ {1...Npqer } do

€ {1..Nyuer} do

€ {1...Npacr. } do

€ {1--~1Vpuck} do

if (Npack — Nrunning > - Niot) then

EPFL Benchmarks A

(f%\ alto University
Q\J}) m Benchmark:

=7

Time To Solution [s]

= SCITAS

o Collisional full-orbit simulation of prompt-losses of fusion alpha particles

o 2D wall; ITER-like but circular equilibrium interpolated with cubic splines
o 2D wall rectangular, coulomb collisions, gyro orbit, simulation time = 0.0001s, fixed time step
o Leonardo: A100, nvhpc/23.1
0 Comparison of three GPU implementations on GPU A100
m Event-based packing algorithm is most efficient in all cases
m Impact of Packing:
e test loadBalanced: Minimal impact due to majority of particles reaching end of simulation
e test loadUnbalanced: Significant impact with speedup of up to 1.41 compared to history-based
algorithm and up to 1.22 compared to event-based one.
M History-Based M Event-Based Event-Based-Packing B History-Based M Event-Based Event-Based-Packing

1000.0 2500.0

2000.0
750.0

1500.0
500.0
1000.0

250.0

Time To Solution [s]

500.0

0.0 0.0

test_loadBalanced test_loadUnbalanced test_loadBalanced test_loadUnbalanced
Comparison of the 3 particle-following GPU implementations - 1 Comparison of the 3 particle-following GPU implementations -
Millions markers - 1 A100 10 Millions markers - 4 A100

14

+73ams

=PFL Profiling Nsys

/i?%\]FI_ !!2,!1!! EEC ER) ,:,,,!JL;!= 18 :
@ - =

it)) ik
)0 i) i) s

m Lower Local Memory Use: Event-based packing
uses multiple smaller kernels, reducing local
memory demands versus the history-based @ == T —
version. —

m Efficient Data Transfer: Minimal data transfer
overhead as all kernels run on the GPU.

m Optimized Memory Access: Contiguous,
coalesced memory access through packing
enhances efficiency.

m Reduced Loop Bounds: Through packing step,
dynamic loop bounds improve runtime
performance, with only ~30% particles active per
timestep.

= SCITAS

ePFL Profiling

(@)

m EventBased version:

o kernels mostly memory-bound

o multiple branch divergences in end_condition kernel
involving lower Memory SOL due to thread divergence

Main kernels

move_particle 64.8
diagnostics 9.6
end_condition 6.5
collisions 5.8
copy_particles_structures 5.5
sorting <0.1

packing <0.1

TABLE LRELATIVE WEIGHTS OF THE DIFFERENT STEPS OF THE SIMULATION ON
A100. % VALUES ARE AVERAGED SIMULATING 1 MILLION PARTICLES
WitH THE AscoT5 EVENT-BASED-PACKING ALGORITHM

= SCITAS

Main kernels g.f)e;ln(o,g)} gg]rjp(lz/z
move_particle 68 30
diagnostics 80 26
end_condition 36 12
collisions 40 56

TABLE ILTEST_LOADBALANCED, SPEED OF LIGHT - 1 MILLION PARTICLES WITH

THE AscoT5 EVENT-BASED-PACKING ALGORITHM

A

Aalto University

16

EPFL Benchmarks A
((7;5\}) m 10M markers Benchmark:
N

o Collisional full-orbit simulation of prompt-losses of fusion alpha particles

2D wall; ITER-like but circular equilibrium interpolated with cubic splines

2D wall rectangular, coulomb collisions, gyro orbit, simulation time = 0.0001s, fixed time step
Jed: 2x Platinum 8360Y, intel/2021.6.0

Leonardo: A100, nvhpc/23.1

NVIDIA Grace-Grace
Intel Ponte-Vecchio 600W engineering sample early access courtesy of INTEL

O o O O O O O

M Jed@EPFL (Icelake 2x36 cores) [Leonardo - A100 - (Event-Based) GH200 (Event-Based) [l Ponte Vecchio (Event based)

B Grace-Grace (2x72 cores)
25000

20418.1

20000

15000

10039.1
10000

Time To Solution [s]

6713

1688 4985.0
5000 32164 3100
229 574 2460.5
41549
1135 3 12643
. .874 60771 464.0 329 6294758 215
o .-.-_..-_-—l___—
1 2 4 8 16 32

17
® SCITAS Number of nodes or A100 or H100 or PVC

PFL Conclusion A

f
/((’"5\}\
&/

e

= SCITAS

Aalto University

Successful GPU Transition: ASCOTS was efficiently ported from CPU to GPU
using a directive-based strategy, ensuring code consistency.

Optimized Algorithms: Three strategies were tested, with event-based-packing
achieving the best performance due to improved load balancing and reduced
thread divergence.

Significant Speedup: Event-based-packing on H100-96GB shows up to 6x
speedup over a dual Intel Xeon CPU node.

ACOT5-GPU is now fully imported into the master version
Several groups have started using it

Future Work: Conduct new tests incorporating enhanced physical models.

18

