

A full-f quasi-neutrality solver for gyrokinetic simulations of tokamaks in presence of poloidal asymmetries

P. Donnel¹, K. Obrejan¹, Y. Sarazin¹, R. Bigué^{1,2} E. Bourne³, L. De Gianni¹,G. Dif-Pradalier¹, X. Garbet^{1,4}, V. Grandgirard¹, B. Legouix¹, Y. Munschy¹

- [1] CEA, IRFM, F-13108 Saint Paul-lez-Durance, France.
- [2] Aix-Marseille Université, CNRS, PIIM UMR 7345, Marseille, France
- [3] SCITAS, EPFL, CH-1015 Lausanne, Switzerland
- [4] School of Physical and Mathematical Sciences, Nanyang Technological University, 637371Singapore.

Motivation

- The goal is to simulate the LH transition with a global gyrokinetic code
- The requirement is to simulate consistenlty the edge and the SOL,
- The SOL is caracterized by large poloidal asymmetries induced by the interaction with the wall (limiter or divertor)
- Poloidal asymmetries are also experimentally measured in the edge when there is a transport barrier [Churchill 2015]
- **Need for a quasi-neutrality solver able to treat large poloidal asymmetries**

TSVV1 deliverable:

D2.10: Report on the impact of 2D (radial/poloidal) density variations in the quasi-neutrality equation

Outline

1. Motivation

- 2. Quasi-neutrality equation
- 3. Test case: GAM damping
- 4. Illustration on a simple case
- 5. Numerical consideration
- 6. Conclusion and outlook

Derivation of the quasi-neutrality equation

Gyrokinetic Poisson equation:

$$
-\nabla_{\lambda_D}^{2}\phi = \frac{1}{\epsilon_0} \sum_s e_s n_s = \frac{1}{\epsilon_0} \sum_s e_s \left(\bar{n}_s + n_{pol,s} \right)
$$

We assume the quasineutrality fullfilled at initial time

$$
-\sum_{s} e_{s} \delta n_{pol,s} = \sum_{s} e_{s} \delta \bar{n}_{s}
$$

Polarisation term (= Finite
Larmor Radius effect)

Two approximations for the polarisation term

Long wavelength approximation (LWA): valid for k_{\perp} $\rho_i \triangleleft 1$

 $e_s \delta n_{pol.s}^{LWA}(\boldsymbol{X},t) = \boldsymbol{\nabla}_\perp \cdot (\alpha_s \boldsymbol{\nabla}_\perp \phi)$

Historically: assumed constant in time $\alpha_s = \frac{m_s \langle \bar{n}_s \rangle_{\varphi}}{\langle B \rangle_{\varphi}^2} \ .$ and therefore 1D This work: 2D function + time dependent

Padé approximation : valid for k_{\perp} $\rho_i \leq 1$

$$
e_s \delta n_{pol,s}^{Pade} (\boldsymbol{X}, t) = \left[1 - \boldsymbol{\nabla}_{\perp} \cdot \rho_s^2 \boldsymbol{\nabla}_{\perp} \cdot \right]^{-1} \left[\boldsymbol{\nabla}_{\perp} \cdot (\alpha_s \boldsymbol{\nabla}_{\perp} \phi)\right]
$$

Three electron models

Full Kinetic Electrons (FKE)

$$
-\nabla_{\perp} \cdot (\alpha \nabla_{\perp} \phi^{FKE}) = [1 - \nabla_{\perp} \cdot \kappa \nabla_{\perp} \cdot] \left(\sum_{i} e_i \delta \bar{n}_i \right) - [1 - \nabla_{\perp} \cdot \kappa \nabla_{\perp} \cdot] e \delta \bar{n}_e
$$

2D time
dependent $\alpha = \sum_{i} \alpha_i \Big| \kappa = \sum_{i} \rho_i^2$

Adiabatic Electrons (AE)

1D time dependent

$$
-\nabla_{\perp} \cdot (\alpha \nabla_{\perp} \phi^{AE}) + [1 - \nabla_{\perp} \cdot \kappa \nabla_{\perp} \cdot] \left[\beta^{AE} \left(\phi^{AE} - \langle \phi^{AE} \rangle_{FS} \right) \right] = [1 - \nabla_{\perp} \cdot \kappa \nabla_{\perp} \cdot] \left(\sum_{i} e_{i} \delta \bar{n}_{i} \right)
$$

Hybrid Kinetic Electrons (HKE)

$$
\beta^{AE} = e^{2 \frac{\langle \bar{n}_{e} \rangle_{FS}}{\langle T_{e} \rangle_{FS}}}
$$

$$
-\nabla_{\perp} \cdot (\alpha \nabla_{\perp} \phi^{TKE}) + [1 - \nabla_{\perp} \cdot \kappa \nabla_{\perp}] \left[\beta^{TKE} \phi^{TKE} \right] = [1 - \nabla_{\perp} \cdot \kappa \nabla_{\perp}] \left(\sum_{i} e_{i} \delta \bar{n}_{i} \right) - [1 - \nabla_{\perp} \cdot \kappa \nabla_{\perp}] e \delta \bar{n}_{e,trap.}
$$

+
$$
[1 - \nabla_{\perp} \cdot \kappa \nabla_{\perp}] \left[\beta^{TKE} \langle \phi^{FKE} \rangle_{FS} \right]
$$

+
$$
[1 - \nabla_{\perp} \cdot \kappa \nabla_{\perp}] \left[\beta^{TKE} \langle \phi^{FKE} \rangle_{FS} \right]
$$

 $\phi^{HKE} = \phi^{TKE} - \langle \phi^{TKE} \rangle_{FS} + \langle \phi^{FKE} \rangle_{FS}$

Numerical solver

The solver uses B-splines & Finite Element [Bourne 2023] to solve the equation of the form

$-\nabla_{\perp} \cdot [A(r,\theta)\nabla_{\perp} \phi] + B(r,\theta) \phi = RHS(r,\theta)$

- A priori adiabatic electron response not included in the model. A fixed point method has been developed to compute $\langle \phi^{AE} \rangle_{FS}$. The method has been extensively tested in the circular geometry. Same result obtained with the old solver.
- We assume $\mathbf{e}_{\parallel} = \mathbf{e}_{\varphi}$ (2D matrix system instead of 3D). Shaped plasmas are included.

$$
\boldsymbol{\nabla}_{\perp}\phi=\frac{\partial\phi}{\partial x^j}g^{jk}e_k=\left(\frac{\partial\phi}{\partial r}g^{rr}+\frac{\partial\phi}{\partial\theta}g^{\theta r}\right)\boldsymbol{e}_r+\left(\frac{\partial\phi}{\partial r}g^{r\theta}+\frac{\partial\phi}{\partial\theta}g^{\theta\theta}\right)\boldsymbol{e}_\theta
$$

Test of the solver: Geodesic Acoustic Modes (GAMs) damping retrieved as in the previous version of the solver

 ρ_*^{-1} =160, $k_r \rho_i = 0.039$ Damping rate, $\rho^* = 1/160$, k_. $\rho = 0.055$ 10° Sugama **GYSELA** \times ORB5 10^{-1} + GENE global 10^{-7} $+$ GENE flux-tube $VIV2V_{Ti}/R_0$] ***** GYSELA $\begin{array}{cc} \gamma_{\rm GAM} \, [2^{1/2} \, v_{\rm ii} \, / \, {\rm R}] \\ \stackrel{\textstyle \textrm{1}}{\circ} & \stackrel{\textstyle \textrm{1}}{\circ} \\ \stackrel{\textstyle \textrm{1}}{\circ} & \stackrel{\textstyle \textrm{1}}{\circ} \end{array}$ Sugama-2008 -Zonca-1996 艾 10^{-4} 10^{-3} 3.5 4.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 1.5 2 2.5 З 4 5 n q [Biancalani 2017]

Impact of updating the QN coefficients: minimal test case

- Standard profiles
- Hybrid Kinetic Electrons
- No source
- Poloidally symmetric buffer region in the edge

No external source of poloidal asymmetries

- **No change in the linear phase as expected**
- Simulation runned in the non linear regime but not really long

Small impact of updating the QN coefficients on the density evolution

Main difference: less poloidal asymmetries with the update

Small impact of updating the QN coefficients on the temperature

 $\underline{\text{ca}}$

Turbulence intensity reduced when updating the QN coefficients

 $\Phi - \Phi_{00}$ at time = 50000.0/ ω_c

 $\Phi - \Phi_{00}$ at time = 50000.0/ ω_c

No update \qquad Update every 500 Ω_{ci}^{-1}

Larger Zonal flows when updating the QN coefficients

Updating the coefficients: compromise between the numerical cost & the impact on the numerical results

 $\Phi - \Phi_{00}$ at time = 50000.0/ ω_c

 $\Phi - \Phi_{00}$ at time = 50000.0/ ω_c

For now, updating rate set manually and a priori

 $C22$

 \triangleright Need for a more systematic criterion for choosing when updating the coefficients

Conclusion and outlook

- A new quasi-neutrality solver has been implemented in GYSELA. Its main features are:
	- Allows to simulate shaped plasmas (novelty in GYSELA)
	- LWA & Padé (novelty in GYSELA) versions of the polarization
	- Handle poloidal asymmetries + time evolution (novelty in GYSELA) \rightarrow requirement for edge and SOL
- Even in the simplest case, updating of the coefficients has a major impact on the turbulence.
- A larger impact is expected when sources/sinks with poloidal asymmetries will be added
- An automatizisation of the updating procedure is still needed: compromise between numerical cost and reliability of results
- The same solver is being developed to be used for solving Ampère \rightarrow evolution of the magnetic equilibrium?