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Example: Simulation of turbulence in AUG L-mode
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In this talk we investigate the transition between turbulent states

in AUG by performing a power ramp on an L-mode

Part I

• Overview of the GENE-X code

Part II

• Previous validation studies in AUG and TCV

Part III

• Turbulence simulations in AUG with a power ramp
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GENE-X Overview
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GENE-X enables gyrokinetic turbulence simulations in X-point

geometries

Features:

• grid-based (Eulerian)

• global

• non-linear

• full-f

• electromagnetic (EM)

• collisional

GENE-X can simulate from the core to the wall.

Efficiently designed for massively parallelized conventional (CPU-based)

supercomputers. Strong scaling with 93% efficiency up to 512 nodes (≈ 20k cores).
[D. Michels, A. Stegmeir, P. Ulbl et al. CPC 264 (2021)] [D. Michels, P. Ulbl et al. PoP 29 (2022)] [P. Ulbl, T. Body et al. PoP 30 (2023)]
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GENE-X solves a full-f, collisional, EM gyrokinetic model

evolution B∗ advection perpendicular drifts
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Based on [D. Michels, P. Ulbl, W. Zholobenko et al., PoP 29 (2022) 032307].
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The Flux-Coordinate Independent Approach (FCI) allows for

simulations in X-point geometries

Plasma turbulence is field aligned, but conventional field aligned coordinates break

down at the X-point.

Solution: FCI approach

• Collection of Cartesian poloidal planes.

• Connected with magnetic field lines.

→ locally field aligned coordinates.

R

Z

ϕ

Discretization:

• 4th order sym. FD for x, z, v|| derivatives

• 2nd order Arakawa for non-linear terms

• 2nd order elliptic solvers (GMRES + multigrid))

• Field line tracing

• Bicubic interpolation

• 4th order sym. FD for y

[D. Michels, A. Stegmeir, P. Ulbl et al., CPC 264 (2021) 107986]
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Collision models of varying fidelity are available in GENE-X

Bhatnagar-Gross-Krook (BGK)
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(
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.

Lenard-Bernstein/Dougherty (LBD)
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• Conservative finite volume discretization (2nd order)

[P. Ulbl, D. Michels and F. Jenko, Contrib. Plasma Phys. 2021, e202100180]

Fokker-Planck/Landau (FPL)
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• Components of U are given by linear combina-
tions of elliptic integrals E(m), K(m)

• 2nd order FV discretization

See [R. Hager et. al, JCP315 (2016)]
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Boundary conditions provide heat and particle fluxes in our

simulations

"First-principles" modelling: we start from an arbitrary initial state, not imposing the

experimental profiles as a whole.

GENE-X BCs

Dirichlet with

• Distribution function: Maxwellian

with experimental profile values for n
and T (no flow)

• Potentials: zero
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Previous Validation Studies with GENE-X
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ASDEX Upgrade Simulations show that realistic mass ratio and

collisions are required
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• Reduced/realistic mass ratio and BGK coll.

• Electron cooling by collisions

• SOL fall-off length λq broadened by collisions

• Case where neutrals are important,

electron temperature set too high

[D. Michels, P. Ulbl, W. Zholobenko et al., Phys. Plasma 29 (2022) 032307]
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Simulation with LBD collisions reproduces experimental elec-

tron temperature profile in TCV-X21

• Realistic Te profile re-

produced by global colli-

sional gyrokinetic simu-

lations

• Collisional de-trapping

of trapped electrons in

the SOL is essential

• Results and data pub-

lished open access
[P. Ulbl et al. PoP 30 (2023)]

[Data: 10.5281/zenodo.7894731]
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Collisional simulations develop "lambda-q" close to experiment

• Divertor heat flux fall-off fol-

lows Eich-fit function

• SOL fall-off length λq

Experimental: 5.5 mm*

Fluid Models*

GRILLIX 1.1 mm
*[D. S. Olivera, T. Body et al. NF 62 (2022)]

GENE-X (Gyrokinetic)

No Coll 1.34 mm
Coll BGK 4.68 mm
Coll LBD 3.75 mm

[P. Ulbl et al. PoP 30 (2023)]

[Data: 10.5281/zenodo.7894731]
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A consistent power balance is only achieved using LBD

Qr / kW Exp No Coll BGK LBD

Separatrix 120 394 35.6 131.5

Both Divertors - 136.5 48.8 135.6

Right Divertor 38.1 101.3 51.6 68.6

Left Divertor - 35.2 -2.8 67.0

Takeaways

• Separatrix power matches experiment within 10%

• LBD simulation has consistent power balance

• No neutrals and radiation yet

[P. Ulbl et al. PoP 30 (2023)]
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Turbulence simulations with a power ramp
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We implement a power ramp by adjusting the inner BCs
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We observe a transition into a turbulence-suppressed state
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Fluctuations within ρ < 1 are suppressed, Er well builds up
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Low density regime due to missing neutral gas particle source

close to the separatrix → H-mode highly unlikely
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Transport changes locally - NEO and EM become important
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Turbulence characteristics change locally - TEM to MTM/KBM?
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Indications for ion orbit losses (IOL) close to separatrix

→diagnostic capabilities are required
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[R. Brzozowski, PhD Thesis]
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Shape of loss region at HFS differs to LFS in line with theory
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[R. Brzozowski, PhD Thesis]
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Summary & Outlook
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Low-density turbulence simulations with power ramp show

transition into turbulence-suppressed state

Key Takeaways

• Fluctuations in confined region mostly

suppressed, while SOL scales become

smaller

• Er-well build-up, outer shear increases

• Transport and turbulence change lo-

cally, EM and NEO effects become im-

portant

• IOL dynamics observed

(further analysis required)

Next steps

• Implement heat and particle sources

(partially completed)

• Repeat simulations with core heat

source and separatrix particle source

• Diagnostics for IOL

(who does the work?)

• Why is turbulence suppressed in

the current case?

Contact

philipp.ulbl@ipp.mpg.de
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