

Evolution of **v_⊥ shear along slow power** ramp towards L-H transition

Emilia R. Solano

Work supported in part by Spanish National Plan for Scientific and Technical Research and Innovation 2017-2020, grant numbers FIS2017-85252-R and PID2021-127727OB-I00, funded by MCIN/AEI/10.13039/501100011033 and ERDF 'A way of making Europe'.

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 - EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Typical results of P_{L-H} density scan in Deuterium
 Example 1 Focus on 1-H transition with very detailed

2

Focus on L-H transition with very detailed Doppler reflectometry measurements

Doppler reflectometry measures v_{\perp} , rotation of fluctuations perpendicular to B

 v_{\perp} shear is exactly what will tear or stretch turbulence eddies', if that is the mechanism for L-H transition

 e $\overline{}$ v_{\perp} ~ExB/B²

131

Emilia R. Solano | TSVV1 | Er measurements along power ramp in JET | 19/09/2024

New: evolution of E_r along power ramp in Deuterium

The dominant understanding of the L-H transition:

- the interaction between turbulence and radial electric field leads to an eventual critical electric field (shear) that stabilizes the turbulence KC Shaing, Biglari&Diamond, Hahm&Burrell, etc he dominant understanding of the L-H
ansition:
the interaction between turbulence and
radial electric field leads to an eventual
critical electric field (shear) that
stabilizes the turbulence
KC Shaing, Biglari&Diamond, H
- The expectation is that the E_r profile ∇p_i [Ryter NF 2014] increases, until a critical E_r well can stabilise turbulence Stabilizes the turbulence

KC Shaing, Biglari&Diamond, Hahm&Burrell,

etc

• The expectation is that the E_r profile

evolves along the power ramp, as ∇p or
 ∇p_i [Ryter NF 2014] increases, until a

critical E_r

Deuterium: E_r measurements along ICRH power ramp, at $n_{e,min}(D)$

Evolution of v_\perp ~E_r/B measured with Doppler reflectometry along especially slow RF power steps (200 kW every 0.5 s). Time resolution: 300 ms (no momentum input) **Evolution** of v_\perp ~E_r/B measured with Doppler
reflectometry along **especially slow** RF power steps
(200 kW every 0.5 s). Time resolution: 300 ms
(no momentum input)
Ohmic: low v_\perp at separatrix/SOL, deep well
D

Ohmic: low v_{\perp} at separatrix/SOL, deep well

During power ramp:

• high v_⊥ at separatrix/SOL when ICRH on • reduction in depth of v_⊥ well with ICRH • similar v_{⊥ maximum} shear during power ramp • L-H: 200 ms after last v_1 profile, 2.5 MW

Neither E_r well nor E_r shear appear to increase during the power ramp.

Is this E_r shape characteristic of L-mode? If so, what triggers the L-H transition?

Emilia R. Solano | TSVV1 | Er measurements along power ramp in JET | 19/09/2024

Emilia R. Solano | Royal Society H-mode transition and pedestal studies in fusion plasmas | Online Event | 17/01/2021 6

JET

Emilia R. Solano | TSVV1 | Er measurements along power ramp in JET | 19/09/2024 7

If E_r profile barely evolves along power ramp, why didn't the transition happen earlier?

Conclusions
E_r profile barely evolves along power ramp, why didn't the transition happen earlier?
We propose ∇ p or F' drive a magnetic phase transition from para- to dia-magnetism.
bte: after the L-H transition b Note: after the L-H transition both ∇p and E_r increase and ExB shear can reduce turbulence **usions**
why didn't the transition happen earlier?
e transition from para- to dia-magnetism.
increase and ExB shear can reduce turbulence and further improve confinement

Technical note:

in the Grad-Shafranov equation the sign of F' (poloidal current density) matters

Note: after the L-H transition both
$$
\nabla p
$$
 and E_r increase and ExB shear can reduce the
\n echnical note:

\nthe **Grad-Shafranov** equation the sign of F' (poloidal current density) matters
\n $\frac{1}{\mu_0 R} \left(R \frac{\partial}{\partial R} \frac{1}{R} \frac{\partial \Psi}{\partial R} + \frac{\partial^2 \Psi}{\partial Z^2} \right) + \underbrace{\left(R p' + \frac{(F^2)'}{2 \mu_0 R} \right)}_{J(\Psi)} = 0$

\nDifferent from Shafranov shift dependence
\nRelated to $\tilde{B}_{||}$ Facundo Sheffield Heit's talk?
\n Emilia R. Solano

\nFind a R. Solano, PPCF, 46 (2004) L7–L13
\n $\text{Expolano, R. D\text{ Hazeltine (2012) } N \text{F}}$

F' sign affects magnetisation interchange transport, drives magnetization phase separation, maybe L-H transitions.

E.R. Solano, PPCF 46 (2004) L7–L13 E R Solano, R D Hazeltine (2012) NF 52 114017

Emilia R. Solano | TSVV1 | Er measurements along power ramp in JET | 19/09/2024 8

- Critical profiles n_e, T_e, T_i determine access to L-H transition
- P_{LH} depends on isotope due to L-mode isotopic dependencies
	- L-mode τ_ε scaling is VERY old (1989), needs revisiting, especially isotope effect
- Effective mass orders threshold, but not good scaling parameter **JET L-H experimental results**
tical profiles n_e , T_e , T_i determine access to L-H transition
₁ depends on isotope due to L-mode isotopic dependencies
L-mode $\tau_{\rm E}$ scaling is VERY old (1989), needs revisiting, e
- v₁ profile doesn't evolve along power ramp

JET L-H experimental res

• Critical profiles n_e , T_e , T_i determine access to L-H tran

• P_{LH} depends on isotope due to L-mode isotopic depe

• L-mode τ_E scaling is VERY old (1989), needs revisiting, es

• E **Magnetization phase transitions: explored in** Equilibrium criticality when j₀=0: ER Solano, PPCF 46 L7 (2004) r_{LH} depends on isotope due to L-inode isotopic dependenties

• L-mode T_E scaling is VERY old (1989), needs revisiting, especially isotope effect

Effective mass orders threshold, but not good scaling parameter
 V_pro Magnetic phase transition, transport barriers: ER Solano & RD Hazeltine NF 52 114017 (2012)

Emilia R. Solano | JET isotope studies and the L-H transition | Ghent, ICPP 2024 | 11/09/2024 9

Plasma magnetization in a tokamak

Emilia R. Solano | JET isotope studies and the L-H transition | Ghent, ICPP 2024 | 11/09/2024 10

Plasma Magnetisation

Plasma Magnetisation

\nThe tokamak plasma is a magnet

\n
$$
\sqrt{\langle B_z \rangle - B_z^{vac}} \cong \mu_0 \left(B_{\theta a}^2 / 2 \mu_0 - \int_0^a p \, dS \right) \bigg/ B_z^{vac}.
$$

Plasma Magnetisation
The tokamak plasma is a magnet
 $\left(\frac{B_z}{B_z}\right) - B_z^{\text{vac}} \cong \mu_0 \left(B_{ea}^2/2\mu_0 - \int_0^a p \, dS\right) / B_z^{\text{vac}}$
The difference between poloidal magnetic and kinetic
pressure determines if it is a para-magnet o **Plasma Magnetisation**

The tokamak plasma is a magnet
 $\langle B_z \rangle - B_z^{\text{vac}} \cong \mu_0 \left(B_{\theta a}^2 / 2 \mu_0 - \int_0^a p \, dS \right) / B_z^{\text{vac}}$

The difference between poloidal magnetic and kinetic

pressure determines if it is a para-magnet kamak plasma is a magnet
 $\sqrt{\left(B_{\lambda}\right)-B_{\lambda}^{xse}} \cong \mu_{0}\left(B_{0a}^{2}/2\mu_{0}-\int_{0}^{a}p dS\right)/B_{\lambda}^{xse}}$

ference between poloidal magnetic and kinetic

re determines if it is a para-magnet or a dia-magnet

planagnetic frog lev.

a kamak plasma is a magnet
 $\sqrt{\langle B_z \rangle - B_z^{\text{vac}} \cong \mu_0 \left(B_{\theta a}^2 / 2 \mu_0 - \int_0^a p \, dS \right) / B_z^{\text{vac}}}$

ference between poloidal magnetic and kinetic

re determines if it is a para-magnet or a dia-magnet

agnets

increase the bac $\frac{\langle B_z \rangle - B_z^{\text{vac}} \cong \mu_0 \left[B_{\text{ba}}^2 / 2 \mu_0 - \int_0^a p \, \text{dS} \right] \big/ B_z^{\text{vac}}}{\text{ference between poloidal magnetic and kinetic}}$

Ference between poloidal magnetic and kinetic

re determines if it is a para-magnet or a dia-magnet

piarmagnetic free press in magn Ference between poloidal magnetic and kinetic
redetermines if it is a para-magnet or a dia-magnet
agnets
increase the background magnetic field
move towards high field
move towards low field
move towards low field
Finilia

Paramagnets

Diamagnets

Diamagnetic frog levitating in magnetic field Eur. J. Phys. 18 307 1997

12

Magnetism in cylindrical blob with pressure peak/hole\n
$$
\mathbf{F} = \text{mn} \frac{d\mathbf{v}}{dt} = -\nabla \tilde{p} + \tilde{\mathbf{j}} \times \mathbf{B} = 0 \qquad \tilde{\mathbf{j}}_{\perp} = \frac{\mathbf{b} \times \nabla \tilde{p}}{B}
$$

n cylindrical blob with pressure peak/hole
 $\mathbf{F} = \text{mn} \frac{d\mathbf{v}}{dt} = -\nabla \tilde{p} + \tilde{j} \times \mathbf{B} = 0$ $\tilde{j}_\perp = \frac{\mathbf{b} \times \nabla \tilde{p}}{B}$

Diamagnetic current: if inside the tube there is a pressure peak,

the associated reduces B_z: diamagnetism $\frac{B_z}{N}$ Diamagnetic current: if inside the tube there is a pressure peak,

n cylindrical blob with pressure
 $\mathbf{F} = \text{mn} \frac{d\mathbf{v}}{dt} = -\nabla \tilde{\mathbf{p}} + \tilde{\mathbf{j}} \times \mathbf{B} = 0$

Diamagnetic current: if inside the tube the

the associated \mathbf{j}_\perp reduces \mathbf{B}_z : diamagnetis

Paramagnetic curre **Paramagnetic current:** if inside the tube there is a pressure hole,
 Paramagnetic current: if inside the tube there is a pressure peak,

the associated $\frac{1}{J_1}$ reduces B_z : diamagnetism

Paramagnetic current: if i **n cylindrical blob with pressure**
 $\mathbf{F} = \text{mn} \frac{d\mathbf{v}}{dt} = -\nabla \tilde{\mathbf{p}} + \tilde{\mathbf{j}} \times \mathbf{B} = 0$

Diamagnetic current: if inside the tube the

the associated \mathbf{j}_1 reduces \mathbf{B}_2 : diamagnetis

Paramagnetic current ρ the associated j_{\perp} increases B_z: paramagnetism

Initial blob with pressure peak/hole

\n
$$
\mathbf{F} = \text{mn} \frac{d\mathbf{v}}{dt} = -\nabla \tilde{p} + \tilde{j} \times \mathbf{B} = 0 \qquad \tilde{j}_{\perp} = \frac{\mathbf{b} \times \nabla \tilde{p}}{B}
$$
\nmetric current: if inside the tube there is a pressure peak,
\nociated \tilde{j}_{\perp} reduces \mathbf{B}_z : diamagnetism

\ngnetic current: if inside the tube there is a pressure hole,
\nociated \tilde{j}_{\perp} increases \mathbf{B}_z : paramagnetism

\nMagnetization of the blob:

\n
$$
\nabla \times \mathbf{M} = \mu_0 \frac{\mathbf{b} \times \nabla \tilde{p}}{B} = -\frac{dM}{dr} \hat{\mathbf{r}}
$$
\n
$$
\tilde{\mathbf{M}} = \frac{1}{\lambda_{\parallel}} \int_0^{\rho} \frac{\mathbf{b}}{B} \frac{\partial \tilde{p}(\rho)}{\partial \rho} \lambda_{\parallel} d\rho' \approx -\frac{\tilde{p}}{B} \mathbf{b} \qquad \begin{cases} < 0, \text{ dia} \\ > 0, \text{ para} \end{cases}
$$

Emilia R. Solano | JET isotope studies and the L-H transition | Ghent, ICPP 2024 | 11/09/2024

Movement of magnetised blobs in paramagnetic plasma

Jackson, Classical Electrodynamics

Ŋ

Diamagnetic plasma: H-mode
Motion of pressure blobs depends on dB₂/dr **a: H-mode**

in of pressure blobs depends on dB₂/dr
 $\lim_{\n\to \infty} \frac{d\vec{v}_r}{dt} \simeq \tilde{M}_c \nabla_r \overline{B}_{\zeta_0}$

diamagnetic hot blobs move inward,

paramagnetic cold blobs move outward

inward thermal energy convection **a: H-mode**
 n of pressure blobs depends on dB_z/dr
 $\lim_{x \to \infty} \frac{d\vec{v}_r}{dt} \simeq \tilde{M}_c \nabla_r \overline{B}_{\zeta_0}$

diamagnetic hot blobs move inward,

paramagnetic cold blobs move outward

inward thermal energy convection

at **lasma: H-mode**

Motion of pressure blobs depends on dB_z/dr
Motion of pressure blobs Motion of pressure blobs depends on dB_z/dr **a: H-mode**
 in of pressure blobs depends on dB₂/dr

 in $\frac{d\vec{v}_r}{dt} \simeq \tilde{M}_\text{c} \nabla_r \overline{B}_\text{co}$
 diamagnetic hot blobs move inward,
 paramagnetic cold blobs move outward
 inward thermal energy convectio a: H-MOde

in of pressure blobs depends on dB_z/dr

 $mn_v \frac{d\vec{v}_r}{dt} \simeq \tilde{M}_\zeta \nabla_r \overline{B}_{\zeta 0}$

diamagnetic hot blobs move inward,

paramagnetic cold blobs move outward

inward thermal energy convection

at the out pressure blobs depends on dB_z/dr
 $mn_v \frac{d\vec{v}_r}{dt} \simeq \tilde{M}_\zeta \nabla_r \overline{B}_{\zeta 0}$

diamagnetic hot blobs move inward,

paramagnetic cold blobs move outward

inward thermal energy convection

at the expense of

outwa H-mode r paramagnetic cold blobs move outward $mn_v \frac{d\vec{v}_r}{dt} \simeq \tilde{M}_\zeta \nabla_r \overline{B}_{\zeta 0}$
iamagnetic hot blobs move inward,
aramagnetic cold blobs move outward
ward thermal energy convection
t the expense of
utward magnetic energy convection
p blobs "decrease", "

W

phase transition
At a magnetic phase boundary blobs of the
same type accumulate/separate **e transition**
 Solution
 Solution
 Example 1998
 Example 1999
 Example 1999
 CALC SOLUTE:
 EXAMPLE 1999
 CALC SOLUTE:
 EXAMPLE 1999
 CALC SOLUTE:
 EXAMPLE 1999
 CALC SOLUTE:
 PARPLE 1999
 PARPLE Magnetic Boundary: phase transition

At a magnetic phase boundary blobs of the

hase transition
 that a magnetic phase boundary blobs of the

same type accumulate/separate

diamagnetic blobs (heat) seek magnetic wells

paramagnetic blobs seek magnetic hills **hase transition**
 hase transition
 hase boundary blobs of the

same type accumulate/separate
 diamagnetic blobs (heat) seek magnetic wells
 paramagnetic blobs seek magnetic hills
 ith multiple blobs moving, These transition
At a magnetic phase boundary blobs of the
same type accumulate/separate
diamagnetic blobs (heat) seek magnetic wells
paramagnetic blobs seek magnetic hills
With multiple blobs moving,
p and B_z profile

At a magnetic phase boundary blobs of the
same type accumulate/separate
diamagnetic blobs (heat) seek magnetic wells
paramagnetic blobs seek magnetic hills
With multiple blobs moving,
p and B_z profiles evolve,
steepenin steepening magnetic hills, digging magnetic wells Developing pressure pedestal

W

Pansition

p increases somewhere, creating

iamagnetic region at plasma edge.

Aagnetization, of both signs, increases. Experience transition

Magnetization at plasma edge.

Magnetization, of both signs, increases. **Phase transition and the self-reinforcing**
Phase transition, of both signs, increases.
Phase transition is self-reinforcing.
Pressure pedestal forms, grows. increases somewhere, creating

imagnetic region at plasma edge.

agnetization, of both signs, increases.

Phase transition is self-reinforcing.

Pressure pedestal forms, grows. Transition

We increases somewhere, creating

Magnetization, of both signs, increases.

Phase transition is self-reinforcing.

Pedestal formation at magnetisation boundary

Shed $B_z(r)$, $p(r)$ initial profiles

with magnetization force **Pedestal formation at magnetisation I**
Assume dashed B₂(r), p(r) initial profiles
Ideal MHD with <u>magnetization force</u>
 $\frac{1}{12} \ln \frac{d^2 \xi_r}{dx^2} = \tilde{M} \nabla \overline{B}$

Assume dashed B_z(r), p(r) initial profiles
\nideal MHD with magnetization force
\n
$$
\overline{n}_{v}m_{i}\frac{d^{2}\xi_{r}}{dt^{2}}_{M} = \widetilde{M}_{\zeta}\nabla\overline{B}_{0z}
$$
\n
$$
\frac{\partial B_{z}}{\partial t}\Big|_{M} = \nabla \times (\tilde{v}_{r}\overline{B}_{0z})
$$
\n
$$
\frac{3}{2}\frac{\partial p}{\partial t}\Big|_{M} = -\nabla(\tilde{p}\,\vec{v})
$$
\nIntegrating one temporal step
\npressure steepens in diamagnetic regions, increases diamagnetism
\nflattens in paramagnetic regions, increases paramagnetism

n

Stal formation at magnetisation boundary

(r), p(r) initial profiles

agnetization force
 $\begin{array}{ccc}\n\bullet^2 \xi_r & -\tilde{M} \nabla^R\n\end{array}$ **Pedestal formation at magnetisation boundary**

Assume dashed B_z(r), p(r) initial profiles

Ideal MHD with <u>magnetization force</u>
 $\overline{n}_{\text{v}}\text{m}_{\text{i}}\frac{\text{d}^2\xi_{\text{v}}}{\text{d}t^2}\Big|_{\text{M}} = \tilde{M}_{\text{c}}\nabla\overline{B}_{0z}$ Assume dashed B₂(r), p(r) initial profiles

Ideal MHD with <u>magnetization force</u>
 $\frac{d^2 \xi_z}{dt^2}\Big|_{M} = \tilde{M}\sqrt{B}_{0z}$
 $\frac{\partial B_z}{\partial t}\Big|_{M} = \nabla \times (\tilde{v}_1 \overline{B}_{0z})$
 $\frac{3}{2} \frac{\partial p}{\partial t}\Big|_{M} = -V(\tilde{p} \overline{v})$

Integrating one eal MHD with <u>magnetization force</u>
 $\overline{n}_{\rm v}m_1\frac{d^2\xi_{\rm u}}{dt^2}\Big|_{\rm M} = \tilde{M}_{\rm c}\nabla\overline{B}_{\rm 0z}$
 $\frac{\partial B_{\rm u}}{\partial t}\Big|_{\rm M} = \nabla \times (\tilde{v}_{\rm t}\overline{B}_{\rm 0z})$
 $\frac{3}{2}\frac{\partial p}{\partial t}\Big|_{\rm M} = -\nabla(\tilde{p}\,\vec{v})$

give temporal step

s $m_v m_i \frac{dF}{dt} \bigg|_{M} = M_v V B_{0z}$
 $\frac{\partial B_i}{\partial t} \bigg|_{M} = -V(\bar{v} \ \vec{v})$

mporal step

in diamagnetic regions, increases diamagnetism

Magnetic phase separation drives pedestal formation

Magnetic phase separation drives pedest $\mathbf{p}(\mathbf{r})$ B_{ζ} B_{ζ} $\qquad \qquad \ddots$ $-B_{\zeta 0}$. λ . The contract of λ Laboratorio

de Fusión

Ciernal

Ciernal

Initial profiles - - -

Final profiles ary

B. C. Macional Chemot

B. C. Macional Chemot

Final profiles ---

Final profiles ---

Final profiles --- \widetilde{v} [~] $\nabla B_{\zeta} \widetilde{M}_{\zeta}$ $\left\{\right.$ $\overbrace{AB} = \overbrace{BA} \cdot \overbrace{AB} \cdot \overbrace{AB$

- **Interchange instability¹**
Dree acts equally on electrons and ions **Interchange instability¹**
• present when radial force acts equally on electrons and ions
• equivalent to the Rayleigh-Taylor instability in a fluid.
-

Ŋ

Interchange instability¹
• present when radial force acts equally on electrons and ions
• equivalent to the Rayleigh-Taylor instability in a fluid.
• magnetization gradient acting on magnetized plasma blobs replace "grav **Interchange instability¹

• present when radial force acts equally on electrons and ions**

• equivalent to the Rayleigh-Taylor instability in a fluid.

• magnetization gradient acting on magnetized plasma blobs replace "curvature".

Suydam criterion for interchange instability
Suydam, Proc. 2nd UN Conf. on Peaceful Uses of Atomic Energy, Geneva, 1958.
 $\left(\mathbf{p}_\alpha\right)^2 \left[\mathbf{p}_\alpha^2, 1\right]$ at 2 magnetic shear opposes interchange of tubes

$$
\beta\sqrt{\frac{Rq}{r_s}}\Bigg|^2\Bigg[\frac{B^2\kappa_r}{\mu_0}\Bigg] {>} \frac{q^{*2}}{4q^2}
$$

for interchange instability

In the proposes interchange of tubes

magnetic shear opposes interchange of tubes

driven by cylindrical curvature and $\nabla \beta$ **for interchange instability**
for **interchange instability**
for on Peaceful Uses of Atomic Energy, Geneva, 1958.
magnetic shear opposes interchange of tubes
driven by cylindrical curvature and $\nabla \beta$
ization force to cvl **Suydam criterion for interchange instability**

B. R. Suydam, Proc. 2nd UN Conf. on Peaceful Uses of Atomic Energy, Geneva, 1958.
 $\beta' \left(\frac{Rq}{r_s} \right)^2 \left(\frac{B^2 r_{s_r}}{\mu_0} \right) > \frac{q^{12}}{4q^2}$ magnetic shear opposes intercha **Suydam criterion for interchange instability**

B. R. Suydam, Proc. 2nd UN Conf. on Peaceful Uses of Atomic Energy, Geneva, 1958.
 $\beta' \left(\frac{Rq}{r_s}\right)^2 \left(\frac{B^2 r_s}{\mu_0}\right) > \frac{q^2}{4q^2}$ magnetic shear opposes interchange of t

B. R. Suydam, Proc. 2nd UN Cont. on Peacerul uses of Atomic Energy, Geneva, J958.
\n
$$
\beta' \left(\frac{Rq}{r_s}\right)^2 \left(\frac{B^2 \kappa_r}{\mu_0}\right) > \frac{q^2}{4q^2}
$$
\n*magnetic shear opposes interchange of tubes*
\nGeneralization: add magnetization force to cylindrical curvature and ∇β
\nGeneralization: add magnetization force to cylindrical curvature
\n
$$
\beta' \left(\frac{Rq}{r_s}\right)^2 \left[\frac{B^2 \kappa_r}{\mu_0} + \tilde{M}_z \frac{dB_{0z}}{dr}\right] > \frac{q^{12}}{4q^2}
$$
\nIn magnetically mixed states
\n*_M*_z $\frac{dB_{0z}}{dr} < 0$
\n*magnetisation force adds to curvature, instability,*
\nuntil the magnetic shear q' or the sign of dB_z/dr changes.
\n*Emilla R. Solano* | JET isotope studies and the L-H transition | Ghent, ICP 2024 | 11/09/2024

Ŋ

$$
\tilde{M}_{z}\frac{dB_{oz}}{dr}\!<\!0
$$

| curvature
|
| instability,
| dr changes.
| Hitansition | Ghent, ICPP 2024 | 11/09/2024 | 20